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Abstract

Terrestrial Radar Interferometry is used to map surface displacement velocites with high temporal resolution,

irrespective of sunlight and cloud cover. The main factor limiting estimation accuracy are variations in the

atmospheric refractive index, observed as atmospheric phase screens (APS). A statistical model for APS as-

suming a separable spatio-temporal covariance structure is described. It facilitates the extrapolation of the

APS from observations at persistent scatterers (PS) using regression-Kriging, which is followed by a timeseries

inversion to estimate the surface velocity. A statistical analysis of the APS is performed using a Ku-Band

radar timeseries of Bisgletscher, a glacier in the Southwestern Swiss Alps. The results show that, while some

non-stationarity in the covariance structure is observed at large timescales, the covariance models obtained

assuming separability perform well in APS mitigation using regression-Kriging.

1 Introduction

Terrestrial radar interferometers (TRI) can be used to

estimate the surface velocity of glaciers[1]–[3] using

differential interferometry. These observations are

complimentary to those obtained from space- and air-

borne SAR systems: the limited spatial coverage of

TRI data is accompanied by an higher flexibility in

acquisition time and imaging geometry, permitting to

better capture faster temporal dynamics such as diur-

nal cycles. TRI measurements are also complimen-

tary to non-radar techniques such as time-lapse cam-

eras and total stations because observations are possi-

ble regardless of weather and illumination conditions.

As TRI is a coherent technique, its sensitivity to

changes of the dielectric properties of the propagation

medium can severely affect estimation accuracy: the

temporal and spatial variability in atmospheric water

vapor content[4] cause phase contribution that can,

at worst, completely mask the displacement phase.

Since these two contributions usually have distinct

spatial and temporal statistical behavior[5], it may be

possible to estimate their relative contributions and

improve displacement estimation accuracy. If a suit-

able statistical model is used, the uncertainty in the

estimates can be quantified as well.

2 Methods and Data

2.1 Signal Model

The problem of estimating displacements from a set

of M interferometric phases is formalized as:

z =
4π

λ
Tv + ǫatm + ǫdecorr. (1)

Where z is a stack of M unwrapped and referenced

interferograms, comprising of P pixels computed

from a vector s of N SLC (Single Look Complex)

acquisitions, ordered by acquisition time. Formally,

these two vectors are related by the incidence matrix

A of the interferogram network[6]:

z = As. (2)

Furthermore, v is a vector of PS, S ≤ M veloci-

ties and T = I ⊗ Ti is a block-diagonal diagonal

of P blocks. The i-th block, Ti expresses the rela-

tion between the interferometric phase and the veloc-

ity for the i-th pixel; usually the same model is used

for all pixels. This can be illustrated with an exam-

ple: assuming a single velocity for the duration of the

stack, each block corresponds to the vector of tempo-

ral baselines and the problem of (1) reduces to inter-

ferogram stacking[7].

The vectors ǫatm and ǫdecorr represent the (differen-

tial) APS and the decorrelation noise affecting the in-

terferometric stack; they are assumed to be mutually
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uncorrelated Gaussian random vectors, with a covari-

ance matrix Σz = Σz,atm +Σz,decorr[5].

The optimal estimate of v in the above model is the

generalized least squares (GLS) solution[8]:

v̂ =
(

T
T
Σ

−1

z T
)

−1

Σ
−1

z Tz (3)

However, problems of theoretical and practical nature

imply that a direct solution of (3) is often not possi-

ble:

• The covariance matrices of the APS and of the

decorrelation are not known a priori.

• Even if they were, their inversion would be

computationally costly.

2.2 Noise Model and Inversion Scheme

Solving (3) directly may be not necessary if simpli-

fied structures for Σz and for the displacement model

are assumed.

To begin, one should remember that the APS af-

fecting an interferogram between the i-th and the j-

th acquisitions is in fact a differential APS, the dif-

ference between the unobservable APS affecting the

SLC phases of the two data takes.

The SLC APS is modeled statistically as a

Gaussian random processes (GRP) with well de-

fined mean and covariance functions, µ (s, t) and

Cy (s, s+ d, t, t+ u). The mean function µ (s, t) is

identified with the effects of atmospheric stratifica-

tion[2], [9]–[12], described through a linear model in

the spatial coordinates. The covariance function C

is needed to fully describe the random behavior of

the atmosphere, which is attributed to turbulent mix-

ing[4].

As interferograms are computed by differencing SLC

phases at the same location for different times, they

will be again samples of GRP since linear combina-

tions of GRP are again GRP. Since the mean func-

tion was assumed to be a linear function of the co-

ordinates, the same functional form can be used to

describe the differential stratified APS. However, the

covariance function Cz of the differential APS is a

function of two pairs of acquisition times and not just

two times as in Cy .

Therefore, some simplifying assumptions are needed

to estimate the second order statistics of the APS and

to use them to improve the estimation of surface dis-

placements described in 3.

Thus, the SLC APS is assumed to be isotropic, sta-

tionary in time and space and separable, so that the

covariance between any two points and times is only

a function of the temporal and spatial separations d

and τ and can be factored in a temporal and a spatial

covariance function[13]:

Cy (s, s+ d, t, t+ u) = Cy,s (d)Cy,t (τ) (4)

Its discretization at the SLC pixel locations and times

give the covariance matrix Σy; thanks to separability

it can written as the Kronecker product of temporal

and spatial covariance matrices, Σy,s and Σy,t:

Σy = Σy,s ⊗Σy,t (5)

This translates to the following covariance matrix Σz

for the differential APS:

Σz = Σy,s ⊗A
T
Σy,tA (6)

This implies that the spatial covariance of the APS af-

fecting interferograms in z[5] is the same as the one

of the SLC APS. As stationarity is assumed, the co-

variance is only a function of distances between pix-

els and not of their locations. Similarly, the temporal

covariance is solely a function of the temporal base-

line and of the incidence matrix A. A similar covari-

ance model was proposed in[5]; the main difference

being the assumption that the APS is uncorrelated in

time, which is realistic in the spaceborne SAR case,

where revisit times of several days are common.

Arguably, these are strong assumption on the sta-

tistical character of the APS; they are clearly vi-

olated by assuming Taylor’s hypothesis[14], where

turbulent structures are advected by the wind, re-

sulting in a non-separable covariance[13]. However,

spatio-temporal stationarity and separability can be

employed to simplify the inversion of (3) in the fol-

lowing manner:

• Σatm,s and Σatm,t are estimated using a vari-

ogram estimator on a set of persistent scatterers

(PS) located on stable areas, where v = 0 and

where no decorrelation is expected. Specifi-

cally, Σatm,s is estimated by averaging spatial

variograms over the set of all avialable inter-

ferograms. Σatm,t is estimated as the average

variance of interferometric phases as a function

of the temporal baseline.

• the APS at any point for the i-th interferogram

is predicted with regression-Kriging[15] using

the phase measured at the PS and the estimated

spatial covariance. After removing the APS

prediction, the interferogram zres is approxi-

matively spatially uncorrelated.

• Solve (3) replacing z with zres and Σatm,s

with I. Since the spatial correlation is removed,

the problem can be now solved for each pixel

individually by only accounting for temporal

correlation.
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2.3 Displacement Model and Interfero-

gram Network Formation

The assumption of a displacement model through T

and v also has bearing on the solution of equation (3).

Using a model with S ≪ PM increases the robust-

ness of the estimates by providing redundant obser-

vations; additionally with a wise choice of displace-

ment model, together with the above assumptions re-

garding the covariance of the APS, the large inversion

problem of (3) can be split into subproblems that can

be solved independently.

In this case, a piecewise linear model with a constant

velocity vj over a duration ts covered by a group of

interferograms with length Ns is used. Thus, consid-

ering a single pixel, the problem matrix Ti is:

T =
4π

λ
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(7)

where the entry Tij corresponds to the time duration

spanned by the i-th interferogram in the j-th stack.

For all P pixels in the i-th stack the problem can be

written as:

zi = (Ti ⊗ I)vi + ǫz,i (8)

When S = 1, this model corresponds to the case of

interferogram stacking[7] where a single velocity for

all times is assumed.

3 Experimental Data and Results

3.1 Experimental Data

A three month long series of SLC data was acquired

in 2015 with the purpose of monitoring the Bis-

gletscher, a steep alpine glacier in the Southwestern

Swiss Alps, canton of Valais. The data was acquired

using KAPRI[16], a polarimetric extension of GPRI,

a Ku-Band real aperture terrestrial radar interferom-

eter[17]. The acquisition repeat time was set to 2:30

minutes to minimize decorrelation and phase wrap-

ping, since a maximum displacement rate of up to 2

meters/days is expected in the steepest sections of the

glacier.

Since the entire time series would be to large to an-

alyze as a whole, a subset is obtained by randomly

selecting 10 reference dates and taking all the SLC

within an hour from each of these dates. The goal of

this sampling procedure is to ensure a diversity of at-

mospheric conditions to better characterize the statis-

tics of the APS.

3.2 Displacement Model and Interfero-

gram Network Formation

To minimize phase wraps and maintain high coher-

ence, SLCs separated by a maximum of 7 minutes are

used to form interferograms; each group of interfer-

ograms thus chosen covers approximatively ts = 30
minutes.
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Figure 1: Spatial variogram plot; each dot represents

the semivariance at a given spatial lag for a given in-

terferogram, whose temporal baseline in seconds is

encoded by the dot’s color. The continuous blue line

represents an exponential spatial variogram model fit,

fitted to the variograms averaged over the set of all

temporal lags, shown as the dashed black line. The

gray ribbon shows the standard deviation of the vari-

ograms.

A set of PS is identified by computing the mean to

standard deviation ratio of the intensity of SLC data;

the initial set is reduced to approx. homogeneous spa-

tial density[18] using the average interferometric co-

herence as a quality measure; since the deformation

at the timescale of the investigation presented here
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is spatially confined to the glacier, it can be safely

assumed that their phase is mostly affected by the

APS only. These PS are used to compute the spa-

tial and temporal statistics of the APS and to perform

regression-Kriging.

3.3 Covariance Model
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Figure 2: Temporal variogram plot, computed as the

mean squared of the interferogram’s phases grouped

by temporal baseline. The black dots represent the

variogram’s samples, while the blue line is an expo-

nential temporal variogram model fit.

The validity of assuming a separable spatio-temporal

covariance structure is investigated empirically by

variogram analysis. All interferograms up to a max-

imum temporal baseline of one hour are generated

from the set of PS; then a spatial variogram is esti-

mated on each interferogram individually; the result

of this procedure is shown in Figure 1 as a spatial

lag versus semivariance plot. Each dot represents the

semivariance at a certain spatial lag for an individual

interferogram. The dashed line represents the aver-

age variogram obtained by averaging the variograms

over the set of all interferograms, while the gray rib-

bon displays the standard deviation computed over

the same set as a function of the spatial lag.

There seems to be a certain variability in variogram’s

shape as a function of the temporal baseline. Vari-

ogram at smaller temporal lags show a longer range,

those at longer temporal separations show a shorter

range with a larger variation in shape, especially at

mid spatial lags. This effect is clearly manifest in the

ribbon plot as the different shapes of the lower and

upper edges.

Arguably, these results might suggests the inapplica-

bility of a stationary and separable variogram model

as described by (5). Namely, if stationarity and sep-

arability are assumed, the variogram’s shape cannot

change with temporal baselines; only its sill –that

is the value of the phase dispersion at infinite spa-

tial separation, roughly corresponding to the interfer-

ogram’s phase variance– can change, scaled by the

temporal covariance function; since space-time inter-

actions that would change the variogram’s shape are

not allowed under a separable covariance model.

Indeed, the value of the sill seems to consistently in-

crease with increasing temporal baselines, as shown

in the temporal variogram plot of Figure 2.

Temporal non-stationarity could explain the variation

of variogram’s shapes: it is likely that different atmo-

spheric conditions are observed at different times of

the day, these changes are likely driven by the amount

of solar radiation. Evidence for this hypothesis is

provided in Figure 3, where the variogram analysis

is performed by grouping interferograms by the hour

of the day. The results seem to show two main var-

iogram types, reminiscent of those observed in Fig-

ure 1 at the upper and lower ranges of the ribbon plot.
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Figure 3: Spatial variogram plot obtained in the same

manner as described in Figure 1; variograms are ag-

gregated by the hour of the day and the analysis is

repeated for each group individually.

However, the variation in variogram’s shape does not

seem so severe to warrant the use of a non-separable

or nonstationary covariance model, also because of
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the higher computational cost of inverting (3) when

stationarity and separability are dropped.

The spatial and temporal variogram models estimated

assuming stationary separability, while not entirely

correct, are used to approximate the spatio-temporal

covariance functions of the APS. These covariance

models are employed for regression-Kriging and in

the GLS inversion for the velocity timeseries.

3.4 Performance of Spatial APS Mitiga-

tion
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Figure 4: Performance assessment of regression-

Kriging in combination with different temporal co-

variance models for the inversion of (3). The three

columns represent the case considering the tem-

poral covariance of the APS (stacked: APS), the

ordinary least squared result assuming temporally

uncorrelated APS (stacked: OLS) and the veloci-

ties estimated directly from individual interferograms

(stacked: no).

The performance of regression-Kriging in the mitiga-

tion of APS contribution is tested by cross-validation

with a set of pixels corresponding to stable areas,

taken from all the interferograms in the network.

Their phases are extracted, converted into velocities

and analyzed by plotting their distribution. The re-

sults are displayed in Figure 4 in the column named

"stacked: no", where the histogram’s colors encode

the method of APS correction. If no correction is

applied ("unprocessed"), a skewed and wide distribu-

tion is observed. By removing the estimated stratified

contribution ("lm") the distribution is centered but a

significant variance in the estimates is still observed;

which is substantially reduced by regression-Kriging

("kriged"); probably the stratified APS model is only

able to capture a fraction of the total APS phase vari-

ance. The relatively high performance of Kriging

suggests that the spatial covariance model derived by

assuming separability, although not entirely correct

and theoretically not justifiable, could be sufficient to

mitigate most of the spatial variability caused by the

APS.

3.5 Timeseries Inversion Performance

The performance of the timeseries inversion using

the derived temporal covariance model, is tested in

the same manner as done for the spatial APS mitiga-

tion. The results are plotted in the columns of figure 4

named "stacked: OLS" and "stacked: APS". In the

first case, the temporal correlation of the APS is ig-

nored and Σz,t is assumed to be the identity matrix;

giving the ordinary least squares (OLS) estimate of

v. In the second case, the temporal covariance model

estimated by variogram analysis is used to invert (3).

Both cases are repeated for different spatial APS mit-

igation methods; encoded by different colors. The

variance is significantly reduced for all spatial APS

correction methods in both the OLS and the GLS

solution; the latter case with a slightly smaller vari-

ance. This plots also highlights another advantage of

first applying a spatial APS mitigation: a given level

of estimation variance can be achieved by includ-

ing less interferograms in (7) compared to just solv-

ing (8) using interferograms without any APS correc-

tion; better preserving the temporal resolution of the

estimated velocities.

4 Conclusions

In this paper, a separable spatio-temporal covariance

model to describe the APS in high repat-rate terres-

trial radar interferometric observations in alpine val-

leys is presented and tested with geostatistical meth-

ods. While variogram analysis shows a partly non-

stationary behavior of spatial APS statistics, approx-

imate spatial and temporal statistics are derived as-

suming separability and used to mitigate the APS

using regression-Kriging followed by a generalized

least squares inversion for the surface velocity. The

choice appears reasonable considering the significant

reduction in estimation variance, assessed in a cross-

validation analysis on a set of stable scatterers.
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