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Abstract— Terrestrial radar interferometry (TRI) can measure
displacements at high temporal resolution, potentially with high
accuracy. An application of this method is the observation of
the surface flow velocity of steep, fast-flowing aglaciers. For
these observations, the main factor limiting the accuracy of
TRI observations is the spatial and temporal variabilities in
the distribution of atmospheric water vapor content, causing a
phase delay [atmospheric phase screen (APS)] whose magnitude
is similar to the displacement phase. This contribution presents a
geostatistical analysis of the spatial and temporal behaviors of the
APS in Ku-Band TRI. The analysis is based on the assumption of
a separable spatiotemporal covariance structure, which is tested
empirically using variogram analysis. From this analysis, spatial
and temporal APS statistics are estimated and used in a two-step
procedure combining regression-Kriging with generalized least
squares (GLS) inversion to estimate a velocity time-series. The
performance of this method is evaluated by cross-validation using
phase observations on stable scatterers. This analysis shows a
considerable reduction in residual phase variance compared with
the standard approach of combining the linear models of APS
stratification and interferogram stacking.

Index Terms— Atmospheric modeling, atmospheric phase
screen (APS), differential radar interferometry (D-InSAR), syn-
thetic aperture radar (SAR), terrestrial radar interferome-
try (TRI).

I. INTRODUCTION

A. Motivation

AVALANCHING glaciers [1], [2] can pose a hazard to
Alpine Valleys. Ice calving at their terminus has major

consequences, directly, through the subsequent ice avalanche
and, indirectly, since the falling ice mass can trigger other
phenomena such as floods, snow avalanches, and debris flows,

Manuscript received October 30, 2018; revised March 6, 2019, June 2,
2019, October 6, 2019, and January 25, 2020; accepted February 19, 2020.
(Corresponding author: Simone Baffelli.)

Simone Baffelli was with the Department of Civil, Environmental and
Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland. He is now
with the Laboratory for Air Pollution/Environmental Technology, EMPA, 8600
Dübendorf, Switzerland (e-mail: simone.baffelli@gmail.com).

Othmar Frey is with Earth Observation and Remote Sensing, Institute of
Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland.

Irena Hajnsek is with the Mirowave and Radar Institute, German Aerospace
Center, 82230 Wessling, Germany.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2020.2976656

which have severe consequences. The 1956 disaster at the
Mattmark dam construction site [3], the 1962 and 1967 Mount
Huascaran avalanches, and the 2002 Kazbek massif debris
flow [4] are the examples of the consequences of such
collapses [1].

Recent advances in the understanding of glacier failures [1]
suggest the possibility of early detection of developing glacier
failures. In the case of steep, unbalanced cold glaciers, such
as in the Weisshorn hanging glacier [2], [5], [6], mechanical
instabilities in the ice are the main mechanisms leading to
the break-off events, where the rupture happens within the
ice mass. A log-periodic oscillation of the surface velocity
superimposed to a power-law acceleration is observed in these
cases [6]. This behavior may reveal to be useful to predict the
break-off times if frequent observations of the surface velocity
are available.

For steep, temperate glaciers, sliding is the main source
of instability, leading to break offs. Subglacial water pressure
reduces basal friction, causing a major portion of the tongue to
become unstable [7] and eventually to break off. An example
is the Allalingletscher, responsible for the 1956 Mattmark
disaster. In this type of glacier, the surface velocity increases
during the active phases, notably in summer [1]. Despite
this, these patterns only rarely correlate with the break-off
events; surface velocity measurements alone are insufficient
and should be combined with other methods such as seismic
measurements [8].

For both glacier types, reliable and precise measures of
surface velocities are necessary for monitoring and improving
the understanding of their dynamics. Area-wide estimates at
high temporal resolution and over long periods of time are
particularly useful.

Remote-sensing techniques [9]–[11] are frequently
employed for glacier flow measurements, using visible
and infrared images [12]–[14] or coherent [15]–[19] and
incoherent [17], [20] methods with spaceborne and terrestrial
[21]–[25] synthetic aperture radar (SAR) data.

In this context, terrestrial radar interferometry (TRI)
[21]–[25] is complementary to the more established space-
and airborne SAR observations. While the spatial coverage of
TRI is normally smaller, these systems offer great flexibility
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in the acquisition geometry and timing, both of which are
necessary to sample the fast dynamics of the avalanching
glaciers. Moreover, radar data are independent of external
illumination and can acquire data through fog and clouds,
permitting continuous observations during night and with
cloud cover.

These observations are evaluated using differential radar
interferometry (D-InSAR) [26], which uses the sensitivity of
the phase of microwaves to the length of the propagation path
from the sensor to the observed surface. By computing the
difference in the phase measurements at subsequent times,
D-InSAR can estimate the displacements with a precision
theoretically limited by the wavelength employed by the radar.

Variations in the spatial distribution of the atmospheric
water vapor content causing time-varying spatial heterogeneity
in the propagation speed of light are one of the largest sources
of errors in displacement estimation with differential radar
interferometry. These nuisances are known as atmospheric
phase screen (APS) [27]–[29].

Precise estimation of displacements with D-InSAR requires
phase calibration to remove—or at least mitigate—the phase
contribution caused by the APS.

This task has been extensively studied for spaceborne
InSAR, but in smaller measure for TRI observations, owing
to the scarcity of these data sets. The different acquisition
geometries and the short revisit times frequently employed in
these cases suggest a reevaluation of current APS correction
strategies as these were originally developed for spaceborne
InSAR observations.

B. State of the Art

The atmosphere is a complex, dynamic system: temporal
fluctuations of temperature, pressure, and water vapor con-
tent [30] and their heterogeneous spatial distribution produce
spatial and temporal variations in atmospheric refractivity
and, thus, of the propagation delay of EM waves, which are
observed as APS in differential radar interferometries.

Auxiliary observations are sometimes employed to model
the distribution of refractivity at the time of acquisitions
and, hence, correct phase delays in interferometric obser-
vations. Examples of these observations are weather model
outputs [31], wet zenith delay (WZD) maps derived from
global navigation satellite system (GNSS) observations [27],
[32]–[34], or maps of water vapor distributions obtained from
spaceborne microwave radiometers and imaging spectrome-
ters [35]–[38].

In most cases, APS-estimation methods are based on the
composite model of atmospheric phase delay partitioning its
variability [39], [40] between a deterministic and a stochastic
contribution.

The first component is a phase screen of low spatial
frequency, attributed to vertical stratification [31], [41]–[48],
often observed to correlate with topography.

The stochastic contribution is associated with turbulent
mixing of water vapor in the troposphere. This component
is highly variable in space and time and cannot be modeled
with the deterministic approaches. Because it is correlated

with space, it is described using the spatial covariance or
semivariance functions [29], [30], [32] that can be derived
from the turbulence theory [30], [49].

The turbulent contribution is frequently assumed to be
uncorrelated with time [39], [50], [51]. Thanks to this assump-
tion, the APS is separated from other phase nuisances and
the deformation phase using time-series analysis applied on
a set of scatterers whose phase is stable with time and per-
sistent scatterers (PSs) [52]. This gives a pointwise estimate
of the APS, which is extrapolated to a grid, covering the
area of interest using geostatistical interpolators that consider
the spatially correlated nature of the observations such as
Kriging [50], [53].

The extrapolated APS is subtracted from the interferometric
phase observations, which are then processed to estimate the
displacement signal [54], [55].

C. Research Gaps

Solutions based on external data are mainly applicable to
spaceborne InSAR, since, in terrestrial observations, the size
of the scene is much smaller than the resolutions of these
auxiliary observations and of the extent of the deformation to
monitor.

Moreover, in TRI, only a portion of the atmospheric air
column is traversed, while the auxiliary data acquired from
space would give the total phase delay through the entire
height of the troposphere.

These limitations nontwithstanding, similar concepts
employing automatic weather station (AWS) data exist for
TRI [44], [56]. Unfortunately, such measurements are often
not available during a TRI monitoring campaign. Even if
they were, these approaches can only correct large-scale,
low-frequency phase variations and cannot compensate local
high spatial-frequency phase variations.

These limitations motivate the development of the APS
correction approaches based only on the statistical behavior
of the APS, which do not rely on the auxiliary measurements.

The applicability of the statistical assumptions used in
spaceborne D-InSAR to TRI is doubtful because of the smaller
spatial coverage of the data and the different acquisition
geometry.

In the TRI case, the radar signal propagates through a
small vertical portion of the troposphere, while, in spaceborne
SAR, the entire height of the atmosphere is traversed. These
differences mean that both the deterministic models of the
stratified APS and the statistical model of turbulence derived
for the spaceborne InSAR may not apply to TRI observations.

The smaller the scene size, the shorter the vertical
propagation path, and—in the case of observation of fast
displacements—the short time interval between the acquisi-
tions in TRI reduces the magnitude of atmospheric strat-
ification, negatively affecting the performance of the APS
stratification models in the TRI case.

With respect to the turbulent APS, the statistical assumption
of temporal uncorrelatedness must be evaluated considering
the shorter revisit times often used in TRI. In this context,
using parameter estimators accounting for correlation leads to
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more efficient estimators and to more robust inference of the
parameter estimate uncertainity.

D. Contributions of This Article

This article presents a geostatistical analysis of the APS
[27]–[29], affecting the Ku-band TRI data with the aim to
bridge the above research gaps.

To do so, the study starts from the APS model customarily
employed in the In-SAR studies, assuming a combination of
the turbulent and stratified atmosphere. From this mathemati-
cal foundation, a number of issues are investigated.

1) The performance of several models of APS stratification
is quantified by measuring their ability to describe the
phase variance observed at a set of PSs. These points
are chosen at the locations known to be affected by
atmospheric disturbances only.

2) The assumption of spatially correlated, temporally
uncorrelated APS statistics—common for spaceborne
InSAR data—is replaced by a separable spatiotemporal
covariance model. The suitability of this model is tested
by variogram analysis.

3) The performance of APS correction using a
regression-Kriging interpolator accounting for
stratification effects and a spatial covariance model of
turbulence is evaluated. Its performance is evaluated
by computing the residual phase variance at a set of
nonmoving PS.

4) A time-series inversion approach employing the tem-
poral covariance model is presented. Its perfor-
mance in mitigating the residual APS observed after
regression-Kriging correction is assessed.

II. METHODS

A. Differential Radar Interferometry: Signal Model

Differential radar interferometry [57], [58] uses the phase
coherence of radar images to measure the displacements. This
is possible because each scatterer phase as measured by such
a radar contains a contribution proportional to the line-of-sight
(LOS) distance from the sensor to the object.

Consequently, the phase difference between a pair of images
taken at different times contains a term proportional to the
displacement of the scatterers composing the scene.

More formally, start by considering a radar placed at the
origin 0 of a Cartesian coordinate system. In the same frame,
consider a scatterer located at s at time tk . Its phase as
measured by the radar is

φ (tk) = 4π

λ
R (tk) + φscat (tk) + φatm (tk) (1)

where R = |s| is the distance between the scatterer and the
sensor and φscat is the scattering phase, which depends on
the object’s dielectric properties, shape, and a radar-specific
phase offset due to the delays in the device’s circuits. λ is
the wavelength and φatm is the excess phase delay caused by
refraction in the atmosphere.

At a scatterer moving with velocity v = (�R/tl+m − tl)
along the LOS in a period of duration �t between times tl

and tl+m , the interferometric phase or interferometric phase
difference is

�φ = 4π

λ
�R + 2πn + εatm + εdecorr

= 4π

λ
�tv + 2πn + εatm + εdecorr (2)

where �t is the temporal baseline, the term 2πn indicates
that phase measurements are the ambiguous modulo half the
wavelength, (λ/2), εatm = φatm (tl+m) − φatm (tl) represents
the additional differential phase delay due to changes in
atmospheric refractivity, εdecorr describes the noise-like phase
error due to thermal noise in the radar, and φscat models the
phase error due to variations in the scatterer’s properties.

Equation (2) shows that the interferometric phase difference
is sensitive to the displacement �R but also to the changes
in the dielectric properties of the imaged objects and to the
changes in the propagation medium.

In differential interferometry, the objective is the estimation
of the displacement �R—or the velocity v—from these noisy
phase observations. Consequently, all terms and the displace-
ment are considered nuisances.

To improve the displacement-estimation robustness—and
possibly to estimate an object’s displacement history—
multiple phase measurements at different times are often used.
Thus, the model describing a single interferometric phase
observation of (2) is extended to multiple observations as
follows.

Given a vector y of P N radar phases y (i, l) derived
from single look complex (SLC) data acquired at N times
tk and P locations si , estimate the (P N)-element vector v
of surface velocities v (i, l) at times tl = (tk + tk+1/2) with
0 < k < N between subsequent acquisitions at locations si

with 0 < i < P [59], [60].
In analogy with (2), it is convenient to replace the SLC

phase vector y with the P M-dimensional vector of the inter-
ferometric phases z

z = Āy (3)

where z is a P M-dimensional vector of phase differences at P
locations and M times.

Here, M is the number of interferograms, with N < N+1
2 ,

the number of unique pairs that can be formed from N SLC
images.

The matrix Ā = IP ⊗ A is the incidence matrix; an
M P × N P is the block-diagonal matrix used to compute
the interferometric phases from the SLC phase vector. Each
of its blocks A indicates which of the N acquisitions are
paired to form interferograms in z: entries Amk and Aml are
−1 and 1 for the mth interferogram between the lth and the kth
acquisition. As an example, given four SLC images, the matrix
A that gives the three unique interferometric pairs between
subsequent acquisitions is

A =
⎡
⎣

1 −1 0 0
0 1 −1 0
0 0 1 −1

⎤
⎦ . (4)

The (P N)-element vector of velocities v can be related to
the vector of interferometric phases [30], [39], [59], [60] in
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analogy with (2)

z = B̄v + εz (5)

where B̄ = IP ⊗ B and B is an M × N matrix of the time
spans between the acquisition times of the SLC images. Its
construction from the interferogram incidence matrix A has
been described elsewhere [59]. As an example, using the
incidence matrix A of (4) and assuming regularly spaced
acquisitions with �t temporal separation, B will be

B =
⎡
⎣
�t 0 0 0
0 �t 0 0
0 0 �t 0

⎤
⎦ . (6)

Finally, εz is a term subsuming all the noise-like contributions,
assumed to be a zero-mean Gaussian random process with a
P M × P M covariance matrix �z , describing the spatial and
temporal correlations of the nuisance terms.

As the phase nuisance is assumed to be drawn from
a multivariate Gaussian distribution of known covariance,
the generalized least squares (GLS) solution of (5) is the
minimum variance, unbiased estimator for v [61], [62]

v̂ = (
B̄T �−1

z B̄
)
B̄T �−1

z z. (7)

In many cases, acquisitions too distant in time cannot be used
to form interferograms, because they would show a high level
of phase noise caused by temporal decorrelation and will be
affected by phase wrapping. Therefore, A will consists of only
those rows where the temporal baseline is shorter than a given
threshold; thus, M < ((N)(N − 1)/2) and the rank of B is
deficient. In that case, the problem is underdetermined and
there is no unique solution for v. An example of this situation
is shown in (6), where only three interferograms are available
to estimate four parameters.

Decorrelation is mitigated by the PS approaches, where
only observations at highly coherent scatterers [50], [52], [63]
unaffected by temporal decorrelation are used for inversion.
This approach permits to increase the system’s rank by using
interferometric pairs that would have been discarded because
of phase decorrelation when evaluated with conventional inter-
ferometric techniques.

In practice, these methods are of little use in the case
reported in this paper, since the constantly changing surface
features and the rapid motion of glaciers make the detection
of PS very unlikely.

As an alternative, the rank of (5) can be increased by using
a simplified velocity model, described by a vector p with a
smaller number of parameters d < P N [59]

v = Mp. (8)

Assuming constant velocity v0 over time, the model for the
i th pixel is

vi =
⎡
⎢⎣
v0
...
v0

⎤
⎥⎦ = IN,1v0 = Mi p (9)

and M is the block-diagonal matrix IN,1 ⊗ IN,P .

M can be any P N × d matrix describing a simplified spa-
tial and temporal displacement model and possibly enforcing
the spatiotemporal smoothness constraints.

The constrained problem is rewritten as

z = B̄Mp + εz = Ḡp + εz (10)

where the design matrix Ḡ is written with a bar to indicate
that it is the design matrix for the whole set of P pixels in the
set of all M interferograms. For simplicity, Ḡ is assumed to
be a block matrix with P blocks G—the same velocity model
is assumed for each pixel and no spatial constraints are set.

The GLS estimate of p is obtained with

p̂ = (
ḠT �−1

z Ḡ
)
ḠT �−1

z z. (11)

The variance of the estimates is

var
(
p̂
) = ḠT �−1

z Ḡ. (12)

Without further assumptions, the only constraint for the covari-
ance matrix of the nuisance �z is that it must be positive-
semidefinite. As the APS is known to be spatially correlated
and potentially correlated with time, its inversion for (11) may
be computationally costly [39] because of its large size.

By making certain assumptions to be discussed later,
the spatially correlated contributions in �z can be estimated
and removed before the least-squares inversion. By doing so,
a new data set is obtained, where the APS is approximately
uncorrelated with space, making the inversion computationally
easier.

Whether the full inversion is attempted or the latter approach
is used, knowledge of the covariance matrix of the interfer-
ogram network is required for the inversion and to provide
uncertainty estimates or to make reliable inferences about the
derived parameters.

As the interferometric phases z are derived from the SLC
phases by (3), the interferogram covariance is related to the
covariance of the SLC phase vector y [39]

�z = Ā�yĀT . (13)

εy is [30], [39]

εy = εy,atm + εy,decorr (14)

where εy,atm is the phase contribution from the APS and
εy,decorr represents the phase noise due to temporal decor-
relation in each acquisition. These two terms are mutually
uncorrelated, because they are produced by different physical
mechanisms and are expressed as a sum of independent
covariance matrices.

When referencing to the SLC phase, the noise terms must be
seen as deviations from the noise-free SLC phases consisting
only of the propagation term and the intrinsic scattering phase
as in (1) [39]. These equations are only a tool to model
the covariance of the interferometric phases, because the true
SLC phases themselves cannot be observed directly: the effect
of the nuisances and of displacement is only visible in the
differential phases that are computed using (3).

With (3), the covariance matrix of the interferometric phase
vector �z is obtained as

�z = �z,atm + �z,decorr. (15)
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The following sections are dedicated to the individual covari-
ance terms.

1) Covariance of Decorrelation Phase Noise: �z,decorr
models the effect of thermal noise in the measurement system
and random changes in reflectivity on the stability of the
observed interferometric phases. This is usually quantified
through the magnitude of the interferometric phase coherence,
γ [64], derived from spatial or temporal multilooking by
assuming ergodicity [65]. The coherence magnitude is used
to estimate the interferometric phase variance through the
Cramer–Rao lower bound [66].

The phase variance for an interferogram pixel located at si

at time tl = (to + tp/2), derived from acquisitions at times to
and tp , is

Var[zi,o,p] ≥
√

1 − γ 2
i,o,p

γi,o,p
√

2L
(16)

where the notation γi,o,p indicates the coherence estimate at
pixel i from acquisitions o and p.

In the case considered here, with interferograms acquired
at zero spatial baseline, the decorrelation noise is spatially
uncorrelated. �z,decorr is a block-diagonal matrix, where each
M × M block represents the covariance of the decorrelation
process for an individual pixel [39].

In this article, the temporal covariance �z,decorr (i) for the
i th pixel is assumed to follow the Brownian decorrelation
model. This is derived assuming that the incremental displace-
ment of each scatterer composing a resolution cell is drawn
from a uniform distribution [39], [64], [67]. This gives an
exponential decay in the coherence as a function of the time
between acquisitions

γ (�T ) = γ0e
−�t

τ . (17)

The Brownian model is not suitable for all terrain types; it was
found to be applicable to urban areas in [67]. In many cases,
the coherence shows complex patterns as seasonal trends or
variations correlated with weather conditions. These situations
are not modeled in this article.

2) Covariance of APS : The term εy,atm models the
phase delay caused by the inhomogeneous distribution of
atmospheric water vapor in the scene [27]–[29]. Its effect
cannot be appreciated in the SLC phase and only in inter-
ferograms: temporal changes in the spatial distribution of
atmospheric delay εy,atm between the acquisitions appear in
the interferometric phase difference as low spatial-frequency
phase screens that mask the displacement phase.

Part of these phase trends are reasonably approximated—at
least for spaceborne D-InSAR—by the linear models assuming
homogeneous or layered distributions of atmospheric water
vapor [31], [41]–[48]. These models are often not sufficient to
capture the full APS phase variability and must be augmented
with a statistical description.

Therefore, the APS is written as the superposition of these
terms [39], [40]

εy,atm = εy,atm,strat + εy,atm,turb (18)

where εy,atm,strat is the stratified APS and εy,atm,turb is the
turbulent APS, due to turbulent mixing in the troposphere
[30], [32], which is modeled statistically as a zero-mean
second-order stationary Gaussian random process with covari-
ance matrix �y,atm.

More precisely, the random process generating the APS can
be described through a covariance matrix �y,atm if and only if
its covariance function C is stationary in space and time. This
means that C depends only on the spatial separation d = s1−s2
and on the temporal lag t = t1 − t2, and not on the locations
themselves [68]. This assumption is frequently combined by
the assumption of isotropy in space, where C depends only
on the length d = |d| and not on the vector’s direction.

In the spaceborne InSAR studies, the APS covariance is fur-
ther simplified by assuming lack of temporal correlation [39];
thus

C (d, t) = Cs (d) δ (t) (19)

where δ (t) is the Dirac delta distribution. The assumption
of uncorrelatedness with time is justified in the spaceborne
InSAR, because the acquisition repetition times are in the
order of days, where it is expected that the turbulent behavior
in the troposphere changes completely.

This assumption is a special case of the more general
property of separability, which is assumed in this article.
A separable covariance function C can be factorized in the
product of temporal and spatial covariances

C (d, t) = Ct (t) Cs (d). (20)

Separability implies that the spatial statistics are not a function
of time, a very strict assumption. As an example, it is violated
by Taylor’s hypothesis [28], [29], [33], [34], [68]–[70]. In the
latter, it is assumed that turbulent eddies are transported by a
wind field v that does not change their structure.

Therefore, the temporal covariance function can be written
as a function of the spatial covariance and of the velocity
field v

Ct (d, t) = Cs (d − vt). (21)

Despite its limitations, separability is very useful in practice,
as it simplifies fitting the statistical models and substantially
reduces the size of the covariance matrices.

Consider the APS covariance matrix of the SLC phase
vector—the discrete form of the covariance function in (20).
In the stationary and separable cases, this matrix can be
written as a Kronecker product of a P × P spatial covariance
matrix �y,atm,s and of an N × N temporal covariance matrix
�y,atm,t [39], [71]

�y,atm = �y,atm,s ⊗ �y,atm,t . (22)

Using (13), the APS covariance matrix of the interferogram
vector is

�z,atm = Ā�y,atmĀT

= (I ⊗ A)(�y,atm,s ⊗ �y,atm,t )(AT ⊗ IT )

= �y,atm,s ⊗ (A�y,atm,t AT ) (23)
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Fig. 1. Schematic of the two-step spatial APS mitigation and time-series inversion.

where the last step follows from the mixed-product property
of the Kronecker product.

In summary, the considerations made above, combined with
spatiotemporal separability, lead to the following APS model.

1) Assuming the APS in the SLC phase vector to have
a separable covariance, the APS in the interferogram
vector has separable covariance as well. The estimation
and correction of the spatially and temporally correlated
components can be performed separately.

2) The turbulent APS contribution in the interferogram
phase vector has the same spatial covariance matrix as
the unobservable APS in the SLC phase vector. This
covariance does not vary over time.

3) If a linear model is used to describe the stratified APS
in the SLC phase, the stratified APS observed in an
interferogram is described by a model with the same
functional form.

3) Inversion Strategy: In summary, εz , the noise affecting
the interferograms is assumed to be a zero-mean Gaussian
random vector with covariance

�z = �y,atm,s ⊗ (A�y,atm,t AT ) + �z,decorr (24)

where �y,atm,s is the P × P matrix of the spatial APS
covariance, �y,atm,t the N × N matrix of the temporal
APS covariance, and �z,decorr is the P M × P M diagonal
or block-diagonal matrix of the decorrelation phase noise.
Finally, each interferogram is affected by a stratified APS,
which is assumed to be deterministic and is predicted by a
linear model of stratification.

The following procedure is used to estimate the APS
affecting the interferogram vector and reconstruct p.

1) For each interferogram l at time tl , an estimate
ε̂z,atm (tl) of the spatially correlated APS is obtained by
regression-Kriging interpolation of the interferometric
phases observed on a set of PSs whose phase is unaf-
fected by displacement. These estimates are subtracted
from the interferogram vector z, reducing the spatial
correlation in the residual interferogram vector zres to
an extent where it is almost negligible.

2) The generalized least squared inversion for p can then
be applied pixel by pixel on the residual interferogram
vector zres, provided that the design matrix Ḡ can be
written as a block-diagonal matrix with P blocks and
assuming each pixel i to be affected by a spatially uncor-
related, temporally correlated APS and decorrelation
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Fig. 2. Illustration of the computation procedure for the spatiotemporal variogram, used to estimate the space–time covariance of the APS, �y,atm. Assuming
separability, the spatial covariance of the APS has the same structure as the covariance of the interferograms and can be estimated as the spatial variogram
averaged over all temporal baselines. The temporal variogram corresponds to the mean phase variance of the interferogram grouped by temporal lags.

noise contribution, which is assumed to have a covari-
ance matrix

�z,res(i) = �z,t (i)

= I ⊗ (A�y,atm,t AT ) + �z,decorr(i). (25)

The correction of the spatially correlated contribution εy,atm,s

will be described in detail in Section II-B, while the pixelwise
GLS inversion to obtain the estimates of the displacement
parameters is discussed in Section II-C.

A block diagram showing the general principle of the
employed APS correction and inversion scheme is shown
in Fig. 1. The next sections will be devoted to the discussion
of the various steps used in this approach.

B. Spatial Correction of APS

1) Regression-Kriging: According to the model setup,
the interferometric phase z (i, l) at time tl and at any location
si is written as the superposition of the displacement phase
and the stratified and turbulent APS

z(i, l) = zdisp(i, l) + εz,atm(i, l)

= zdisp(i, l) + εz,atm,strat(i, l) + εz,atm,turb(i, l)

= zdisp(i, l) + Xβ(l) + εz,atm,turb(i, l) (26)

where X is a matrix of regressors, which are either functions of
the coordinates si or auxiliary measurement at these locations.

β (l) is the vector of parameters for the stratification model at
time tl and εz,atm,turb is the turbulent APS.

To estimate β̂, a subset S of PSs from the P pixels in the
interferogram is used; it is assumed that their phases at any
time only consist of the stratified and turbulent APS contribu-
tions, with spatial covariance �PS

z,atm,s . The best linear unbiased
estimator of β (l) is given by the GLS estimator [72]–[74]

β̂(l)=(
X�PS

z,atm,s
−1

X
)−1

�PS
z,atm,s

−1
Xz

(
j, l

)
(27)

where X is the matrix of regressors at locations s j j ∈ S,
z ( j, l) the vector of the PS phases, and �PS

z,atm,s is the
spatial covariance of the APS evaluated between the PSs.
Using β̂, the stratified APS contribution at any pixel i in the
interferogram can be predicted

ε̂z,atm,strat (i, l) = X (i, l) β̂ (l). (28)

The solution of (28) does not predict the turbulent component
of the APS, which is often the dominant source of phase
variability in the interferograms.

Due to the spatial correlation of the APS, it is reasonable to
assume that the turbulent APS at a location si near a PS obser-
vation s j , j ∈ S is similar to the phase residual—measured
phase minus GLS prediction of stratification—of (27) at
that PS

εPS
res ( j, l) = z ( j, l) − X ( j, l) β̂ (l). (29)
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The similarity should decrease with the increasing distance
from the PS as the spatial correlation decreases with spatial
separation.

At time l, the turbulent APS at si can be approximated as
a weighted average of the GLS residuals εPS

res at the available
PS s j , j ∈ S

ε̂z,atm, turb (i, l) = w (l) εPS
res (l) (30)

where w is a weight vector, which is a function of the
distances between si and s j , j ∈ S. Under these conditions,
the minimum variance, unbiased estimator for the turbulent
APS is given by the Kriging equation [53], [72]

ε̂z,atm, turb (i, l) = vT �PS
res

−1
εPS

res (31)

where v is the vector of spatial APS covariances between
z (i, l) and z ( j, l) , j ∈ S and �PS

res is the covariance matrix
of the regression residuals at the PS.

The predictor of the combined deterministic and turbulent
APS at any point si is then the regression Kriging estimator

ε̂z,atm,s (i, l) = x (i, l) β̂ (l) + vT �PS
res

−1
εPS

res. (32)

A similar approach is presented in [75], where the intrinsic
random functions of order k (IRF-k) [76] are used to predict
the spatially correlated APS contribution from observations at
a set of PS locations. This method is similar to regression
Kriging [77], [78], with the difference that, in the form
presented in [75], external regressors cannot be employed [78].

In practice, only the nearest K PSs to any prediction point
si are used in order to speed up the inversion of �PS

res
−1

. This
is justifiable, since the farther an observation is located to a
reconstruction point, the smaller its weight will be.

Furthermore, when the APS is extrapolated to the entire
interferogram, the Kriging prediction is computed on a grid
whose spacing is larger than the interferogram pixel spacing,
and the gaps are filled using a distance-weighted bilinear
interpolator.

2) Selection of Stratified APS Model: The choice of a model
for the stratified APS component according to (28) needs
separate consideration.

Homogeneity and isotropy of the atmospheric refraction
index distribution are commonly assumed in the case of
terrestrial interferometry, where the scene is often of limited
size [41]. These assumptions predict an APS proportional
to the range distance from the radar [24], [41]–[43], [47].
To account for spatial inhomogeneities, polynomial models of
higher order are proposed [42].

In scenarios with large variations of terrain height,
the assumption of homogeneous atmospheric refraction does
not apply; a height-dependent term is added as a regressor
in the model [45]–[47] to describe the reduction in the
atmospheric density with increasing elevation, the hydrostatic
delay.

Weather parameters [44], [56] can be used to model the
variations of the atmospheric refraction index. Since the avail-
able weather data are spatially coarse and are of low temporal
resolution, this approach is not considered here.

The model commonly employed in TRI processing is sum-
marized in Table I. Here, r represents the slant range from the
radar, and h and θ are the elevation and the azimuth angle,
respectively. The selection of a stratified APS model best
fitting the measurement data is made automatically: the inter-
ferometric phases at the PS for a large set of interferograms
are used to compute the ordinary least squares (OLS) fit for
each model. The fitting is repeated for each of the available
interferograms.

The relative performance of the models is evaluated compar-
ing the distribution of the Akaike information criterion (AIC)
[80] and of R2 for the models over the set of interferograms.

The model parameters and the statistics used in model
comparison are obtained with OLS and not with the
minimum-variance GLS estimator of (27).

This approximation is acceptable, since the goal is the
comparison of model performance and not the evaluation of
their absolute performance.

3) Spatial Covariance Model for Turbulent APS: Com-
puting the regression-Kriging prediction according to (32)
requires the knowledge of v, which is related to the covariance
of the APS between two points in space si , s j . Theoretical
considerations from the turbulence theory [30], [33], [34],
[49], [70], [81] and data derived from the GNSS or spaceborne
SAR observations [29], [32], [49] are often employed to
derive the APS spatial structure functions [82]—variograms,
correlograms, or periodograms—from which the covariance
can be determined or approximated.

Nonetheless, the validity of these covariance models in the
TRI case is uncertain, given the small number of studies
available, the large variability in the acquisition setups, and
scene choice and also due to the fact that the imaging geometry
specific to TRI is very different to the one in the spaceborne
InSAR studies.

Thanks to the assumption of the spatiotemporal separability
and isotropy, the spatial covariance function can be estimated
from the data using a variogram estimator

γs (d)= 1

2|N (d)|MPS

MPS∑
l=0

∑
(i, j )∈N(d)

|z ( j, l) v −z (i, l)|2 (33)

where the sum index l runs over MPS interferograms at
different temporal baselines. For each interferogram, the mean-
square phase difference between all PSs with spatial separa-
tion d , given by the index set N (d), is computed.

Since z is the interferometric phase difference at a fixed
location, the empirical spatial variogram estimator corresponds
to the mean-squared double phase difference—single differ-
ence in time and double difference in space, once with respect
to the interferogram’s reference point and once between any
two PSs—over the set of all interferograms.

To reduce the estimation bias caused by the stratified
component of the APS in z [83], the variogram γs is estimated
using the OLS residuals of the stratified model [72].

From this empirical spatial variogram γs , a variogram model
is fitted using a nonlinear fit; the variogram model is used
to obtain an approximation v̂ of the covariance between the
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TABLE I

SUMMARY OF STRATIFIED APS MODELS EMPLOYED IN TRI

observations and the test points, which can be used for the
Kriging predictor.

If a bounded spatial variogram model γs,m can be fit to
the experimental variogram estimate, the value of the spatial
covariance function at any spatial lag d is computed with [74]

Cs (d) = γs,m (∞) − γs,m (d) (34)

where γs, m (∞) is the variogram sill, the value that
the variogram attains at infinite spatial separation between
the samples, which corresponds to the phase variance of
the interferograms.

If the spatial statistics of the APS are estimated from the
data, it is advisable to strive for a spatially homogeneous
distribution of PS, such that a homogeneous distribution of
lags d between the PS locations is achieved, ensuring a reliable
estimate of the spatial variogram.

The imaging geometry of TRI should also be considered.
Due to the limited antenna aperture size, the images are
acquired on a polar grid. Thus, the data matrix as returned by
the radar is defined on a polar grid in the range-azimuth plane
(r, θ). For this type of sampling, the spatial lag d between two
points must be determined using the distance formula for polar
coordinates and not with the Euclidean distance normally used
in most geostatistical packages.

In this article, a more efficient approach is used: the data
are geocoded with a digital elevation model. The variograms
are estimated on the geocoded data, which is now resampled
in the 3-D Cartesian coordinates, where the distance between
the points is easily determined.

This is relevant in the scenes with large variations in
elevation, because distances in the slant-range azimuth grid
could substantially differ from the ground distance between
the points. This difference can hinder the fair comparisons
of experimental variograms with theoretical covariance or
semivariance functions derived from the turbulence theory.

C. Temporal Inversion

1) Temporal Covariance Model: Even after removing the
APS estimate from the interferogram vector, considerable
phase variability in time is observed in the residual interfero-
metric phases [84], [85]

zres (i, l) = z (i, l) − ε̂z,atm,s (i, l) (35)

where ε̂z,atm,s is the regression-Kriging prediction of the
spatially correlated APS, whose estimation is detailed
in Section II-B.

Caudff et al. [84] reported the residual phase variation after
correcting the APS by interpolating the spatially low-pass
filtered phase observations of stable areas, a method similar
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to the Kriging interpolation proposed in Section II-B, which
does not use the spatial covariance structure of the APS in the
prediction. In that case, the residual phases were observed to
correlate with variation in the solar radiation.

Similar observations were made by Butt et al. [75], where
after interpolating, the APS observed at a set of PS using
IRF-K, a significant residual phase error was observed, espe-
cially for the areas with a low density of PS. This was
explained through the short correlation length of the APS in
space and its high temporal frequency.

Under the separable covariance model described
in Section II-A, the residual APS in zres (i, l) is a realization of
a Gaussian random process εz,atm,t with no spatial correlation
and a temporal correlation matrix �z,t , approximately the sum
of a block diagonal matrix of APS and of a block-diagonal
or diagonal matrix of noise contributions due to temporal
decorrelation, as described in (25)

�z,res ≈ I ⊗ �z,atm,t + �z,decorr,t . (36)

This formulation is not exact because of the sparse distribution
of the PS across the scene and the approximated covariance
obtained from the variogram; a residual spatial correlation of
the APS can be expected. The residual error will increase with
the increasing distance from the PS; for the sake of simplicity,
this aspect has not been considered in this analysis.

If the noise in the corrected interferogram vector �z,res is
assumed to be spatially uncorrelated, it is only necessary to
consider the temporal correlation of APS and decorrelation
in the solution of (5). In this case, the temporal covariance
structure is described by a block-diagonal matrix �z,res, and
the sum of the temporal APS covariance and of the decorre-
lation covariance [see (36)].

Since �z,res is a block-diagonal matrix, i.e., the nuisance in
zres is not correlated across pixels, (5) can be solved separately
for each of the P pixels, since G is a block-diagonal matrix of
compatible size and shape, i.e., the displacement model does
not include the spatial dependence of its parameters.

The temporal APS covariance �z,atm,t is estimated through
�y,atm,t using an empirical temporal variogram, computed as
the variance of the interferometric phases grouped by temporal
baselines �T , as shown in Fig. 2

γt (�T ) = 1

2|N (�T )|NPS

NPS∑
l=0

∑
i∈N(�T )

|z (l, i)|2 (37)

where N (�T ) is the set of all interferograms with temporal
baseline �T and z is the unwrapped interferometric phase.

Estimating the temporal covariance of the APS requires the
computation of interferograms covering all temporal baselines
up to a sufficiently long time-lag in order to fit a covariance
model, even if only a subset of these interferograms can
be employed for the inversion. This requirement is not as
stringent, since only the interferometric phases at the PS are
required, which are computed efficiently and are unaffected
by temporal decorrelation.

Similarly, the covariance matrix of the decorrelation
�z,decorr can be derived from the SLC covariance matrix
�y,decorr [86] and the incidence matrix A. In this article,

the approach suggested in [39] is used, assuming a Brownian
decorrelation process as follows.

1) The interferometric coherence between two SLCs pix-
els y (i, tl ) and y (i, tl + �T ) separated by a time
�T is modeled with an exponential decay γ (�T ) =
γ0e−�T/τ . The observed coherence as a function of
temporal baseline �T is computed by averaging inter-
ferograms with the same �T , giving γ̂ (�T ). The
parameters γ0 and τ are estimated by minimizing∣∣γ̂ (�T ) − γ (�T )

∣∣ [67].
2) The model parameters are used to generate the coher-

ence matrix of the SLC vector, . Then,  is converted
into the (incorrectly scaled) covariance matrix of the
interferograms z using A. For a pixel i

�z,i = 1

2
Ai AT. (38)

3) Finally, �z is rescaled to a covariance matrix using the
observed interferometric coherences and the expression
for the interferometric phase standard deviation of (16).
For the i th pixel, the new matrix is

�z,decorr,i = D�z,i D (39)

where D is a diagonal matrix with the j th entry corre-
sponding to (Var[z j,i ]/�z,i j j ).

To improve the robustness of the estimated decorrelation
covariance matrix and to reduce the computational load,
γ0 and τ are binned in 30 classes, and the average covariance
matrix for each class is used in the inversion.

2) Pixelwise GLS Inversion: Thanks to the spatial correc-
tion of the APS described in Section II-B, the problem can
be solved for each pixel individually using zres instead of z
to yield the estimate p̂ for all times tl , l = 1, . . . , M at each
location si

p̂(i) = (GT �z,res(i)
−1G)−1�z,t (i)

−1Gzres (40)

where �z,res(i) indicates the i th block of zres corresponding
to the i th pixel.

The feasibility and robustness of the inversion described
by (40) are controlled by the interplay of the available interfer-
ograms, determined by A and by the employed displacement
model, and chosen by p through the design of M.

In selecting A for the high repeat-interval observations of a
fast-moving terrain, it is necessary to compromise between the
computational and storage costs associated with the increasing
number of interferograms and the unreliable phase information
provided by the interferograms with large temporal baselines
that are subject to low coherence and phase wrapping.

A conservative choice is to combine only consecutive SLC
images in an interferogram chain [22], [25], [87], [88], so that
the reference acquisition in the lth interferogram appears again
as the slave of the l + 1th interferogram. In this configuration,
N − 1 unique interferograms are produced.

An interferogram chain is convenient in combination
with a displacement model assuming a constant velocity,
i.e., p = v with v a P × 1 vector. In that case, phase
contributions that appear once as a reference SLC and once as
secondary SLC cancel each other in the GLS solution, leaving
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only the contributions from the interferograms at both ends of
the chain [89].

Assuming a single velocity for the entire time-series negates
the purpose of high repeat-rate TRI monitoring, because vari-
ations in displacement velocity over time cannot be estimated.
The interferogram chain is also not suitable to estimate the
full time-series of N velocities for each pixel, i.e., M =
IP N,P N with v a P N-vector. This formulation likely results
in unreliable estimates, because only one noisy interferometric
phase observation is available for each model parameter.

Redundancy in the form of a simpler displacement model
and of more interferograms can improve estimation robustness.
Optimally, all possible (N(N −1)/2) interferometric pairs can
be used to obtain the maximum likelihood (ML) estimates
of (N − 1) unwrapped differential phases [67], [86], [90] as
if they were interferograms computed from a single master
acquisition. These ML-estimate can then be converted into a
displacement history with N − 1 displacement relative to a
virtual master.

This method is not applicable in the case presented in this
article: the number of interferograms to compute and store
would be too large. Other than these technical limitations,
phase ambiguities and decorrelation also present an obstacle.

As to the former issue, assuming a maximum velocity of
2 m/day in the fastest parts of the glacier, phase wraps can be
expected for interferometric pairs with a temporal separation
of approximately 6 min.

Since the data are acquired with a repeat interval of 150 s,
this allows wrap-free interferograms between the lth and the
l + 1th and l + 2th SLC. Such large displacement velocities
are not expected to be frequently observed; therefore,
the requirement is relaxing by allowing a maximum tem-
poral baseline of 500 s. This choice should not result in
displacement-induced phase wraps except for the most severe
surges in glacier velocity. This interferogram network is
described by the following incidence matrix:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1 0 0 0 . . . . . .
1 0 − 1 0 0 . . . . . .
1 0 0 − 1 0 . . . . . .
0 1 − 1 0 0 0 . . .
0 1 0 − 1 0 0 . . .
0 1 0 0 − 1 0 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

The time-series is inverted using a displacement model
assuming a constant velocity for a duration ts longer than the
SLC repeat interval. In this manner, the interferograms can be
divided into stacks, where the displacement rate is constant.
In this case, M is

M = IP ⊗

⎡
⎢⎢⎢⎢⎣

[
1 0 . . . 0

]
×Ns[

0 1 . . . 0
]
×Ns

...[
0 . . . 0 1

]
×Ns

⎤
⎥⎥⎥⎥⎦

(42)

where Ns is the number of interferograms in each stack.
This model is a modified form of interferogram stacking

[32], [34], [91], where a constant velocity for each pixel is

assumed for the entire duration covered by the interferograms.
In the modified model, Ns velocities are estimated, using
the parameter to interpolate between the reliable estimates
and temporal resolution. In this article, Ns = 16 is selected,
corresponding to about 30 min.

III. DATA

A. Device: Ku-Band Advanced Polarimetric Radar
Interferometer (KAPRI)

The data used in this article were acquired using a
KAPRI [92], [93], a fully polarimetric version of the
gamma portable radar interferometer II (GPRI-II) [94] and
a Ku-Band portable terrestrial radar interferometer. The
radar is based on the dechirp-on-receive frequency-modulated
continuous-wave (FMCW) architecture [95]. With a chirp
bandwidth of 200 MHz, a nominal distance resolution of
0.75 m is achieved. Since a windowing filter is used
to suppress the processing sidelobes caused by the dis-
crete Fourier transform (DFT) used for range compres-
sion, the effective range resolution is 0.9 m. Resolution
in the direction perpendicular to the LOS is given by a
2-m-long slotted waveguide array with a half-power
beamwidth of 0.385◦, corresponding to a ground cross-range
resolution of 7 m at 1-km slant range.

B. Bisgletscher 2015 Campaign

A series of KAPRI data spanning the period between
July and late August 2015 was acquired from the Domhütte
mountain hut at an altitude of 2940 m, looking at the Bis-
gletscher on the opposite side of the valley (see Fig. 3) and
covering a range of distances between 4000 and 8000 m.
At these distances, GPRI data have a cross-range resolution
between 30 and 60 m and a range resolution of approximately
0.9 m. An SLC image was acquired every 150 s; the repeat
time is chosen to minimize temporal decorrelation and to
avoid phase wrapping due to the rapid motion of the glacier’s
surface estimated using the time-lapse camera to be as large as
2 m/day. The data set does not uniformly cover the duration
of the measurement campaign due to a combination of the
technical and logistical limitations.

1) The radar installation used the hut’s electrical power
supply, consisting of solar panels supplemented by a
small hydroelectric plant. During the times of high
activity at the hut, the radar had to be disconnected from
its power supply. A buffer battery permitted continuing
acquisition for approximately 6 h from the power cutoff.
During longer interruptions, this alternative was not
sufficient to ensure continuous operation.

2) Nearly 200 GB of SLC data was produced every
day. To provide data download and control, the radar
was connected to a Wi-Fi link provided by the
PermaSense/X-Sense project [96]. Since this link is
designed to connect a low-power sensor network, which
is expected to produce a much lower daily data volume,
daily transfers of the entire radar data set were not possi-
ble. Therefore, the SLC images were stored locally on a
network-attached storage (NAS) system connected to the
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Fig. 3. Overview of the area under study. (a) Approximate location of the Bisgletscher in the Canton of Valais, Switzerland. (b) Image of the Bisgletscher
as seen from the radar point of view at Domütte, with glacier outline drawn in purple. (c) Geocoded average backscatter power map geocoded in Swiss
map coordinates. (d) Locations of radar at Domhütte, glacier, and reference location for interferogram referencing overlaid on a topographic map with
1 : 50000 scale. (Basemap: [97]).

radar using a local-area-network connection. Since only
a 100-MB/s Ethernet cable was installed, the maximum
daily data amount that could be transferred from the
radars own storage to the NAS was still smaller than
the predicted daily amount. To avoid running out of
storage space on the computer controlling the radar,
acquisitions were only carried out for 12 h each day,
while the remaining time was dedicated to copying the
data to the NAS system.

From the acquired data, a subset of data is sampled for the
analysis of the APS: ten timestamps are chosen randomly from
the set of acquisitions. For each of these timestamps, all SLCs
closer than 1 h are used for the analysis. The random sampling
is used to ensure that different atmospheric conditions are
represented in the study, since they are presumably influenced
by the weather and time of the day.

C. Data Processing

The acquired SLCs are coregistered to a common master
acquisition by amplitude cross correlation to minimize the
loss of coherence. Interferograms are formed by complex
multiplication, followed by 5 × 2 multilooking. A larger
range multilooking is used in order to minimize the loss of
azimuth resolution, which by virtue of the acquisition geome-
try increases linearly with slant range distance. Interferograms

are unwrapped using the minimum cost flow unwrapping
algorithm and referenced to a reference point corresponding
to a stable rock face close to the glacier, as shown in Fig. 3.

The PSs used to derive the spatial and temporal statistics
were detected using the intensity-mean-to-standard-deviation
ratio [50] on an SLC stack of 50 acquisitions and by removing
the PS found in the areas known to be moving. The initial list
of candidate PS was reduced to an approximately homoge-
neous spatial PS density using the method described in [98],
employing the interferometric coherence with respect to the
first SLC in the stack as a quality measure. The processing
chain is implemented using Python, R, and the Gamma
Software on top of the Nextflow [99] dataflow programming
framework, which allows a reproducible analysis of the time-
series.

IV. RESULTS

A. Spatial Correction of APS

1) Selection of Stratified APS Model: As discussed
in Section II-B, the APS in the interferograms is modeled as
the sum of a deterministic delay predicted by an atmospheric
stratification model and a turbulent atmospheric delay contri-
bution, modeled as a Gaussian random variable.

To select the best performing linear model for the stratified
APS εz,atm, strat, a statistical model comparison is made on a
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Fig. 4. (a) Boxplot of the AIC values for a selection of models described in Table I. To produce this figure, 508 interferograms were considered. Each of
the models discussed was applied to every interferogram, and the AIC statistic was computed. The AIC is plotted as a color-coded histogram, and the model
whose AIC is lower is the one whose performance is the best relative to the other models it is compared with. (b) Boxplot of the R2 values for the models
listed in Table I. The plot is obtained with the same procedure as in (a).

large set of interferograms. For each interferogram l at time
tl in the network, an OLS estimate for β (tl) is computed for
every linear model among those described in Table I.

The model fit parameters β (tl) alongside summary statis-
tics, such as the sum of residuals, the R2 value, and the
AIC [80] are stored for each model run. The results of
numerical evaluation are shown in Fig. 4(a) as a boxplot of
the AIC values grouped by the model; each model is assigned
a different color in the bar plot. A statistical summary of R2

values is shown in Fig. 4(b) using a similar visualization.

2) Spatial Covariance Model for Turbulent APS: The spa-
tial correction of the APS contribution is performed by predict-
ing the unobserved APS at the locations of interest s according
to the regression-Kriging equation (32). The estimated APS
is then subtracted from the interferogram as in (35). The
prediction at a point si requires the spatial covariance of the
APS between this point and the PS used as observations.

As the true APS covariance is not known, it is replaced with
a covariance model derived from an experimental variogram,
as illustrated by (34). The variogram is computed by averaging
the individual spatial variograms obtained from a number
of interferograms, according to (33). These interferograms
are generated using 100 SLC acquisitions, from which all
PS interferograms with a maximum temporal baseline of
120 minutes are formed.

The spatial variograms obtained from each interferogram are
plotted as dots in Fig. 5(a), and their color encodes the tempo-
ral baseline. Assuming the validity of the separable covariance,
there should be no variation in spatial covariance between
the interferograms; this is tested empirically by plotting the
standard deviation of the spatial variograms across realizations,

shown in Fig. 5(a) as the gray ribbon around the averaged
variogram and plotted as a black dashed line. An exponential
variogram model, shown as a blue line, is fitted to the
average.

3) Performance of Spatial APS Removal: The performance
of the spatial APS estimation is assessed by cross-validation.
A second set of PS was located on stable areas around
the glacier, excluding those used for the regression-Kriging
prediction. The phases of each interferogram and the residual
phase after the removal of the APS estimates at these points
are extracted and converted into velocities.

The results of cross-validation are displayed as histograms
in the no row of Fig. 6. Three methods are compared. The
regression-Kriging is shown in the column labeled kriged.
The reference case with no correction applied is displayed in
the column unprocessed, while the results after removal of the
stratified APS contribution are shown in the column labeled
lm. The interferometric phases outside of the glacier corre-
spond to the APS only, because on rocks, no displacement is
expected at the scale of the interferogram’s temporal baseline.
Therefore, the distribution of the estimated velocities on PS
can be used as a proxy for the APS-correction quality.

A visual comparison of these methods, in the form of
standard deviation maps, is shown in the first row of
Fig. 9(a)–(c) for the uncorrected case, the stratification model,
and regression-Kriging, respectively. These maps are obtained
with a sample estimator for the standard deviation, applied on
the estimated velocity time-series.

A more quantitative assessment of the standard deviation of
these residuals is given by the summary statistics Table II in
the rows labeled “no.” The table shows the bias and standard
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Fig. 5. Spatial and temporal variograms derived from 1535 PS interferograms computed from 100 SLC acquisitions. All distinct interferograms up to a
maximum temporal baseline of 120 minutes were computed and unwrapped. (a) Empirical spatial variogram. Each dot corresponds to the empirical spatial
variogram for one PS interferogram, and its color indicates the temporal baseline of that interferogram. The black line is the mean variogram, surrounded
by a gray ribbon showing the standard deviation of the individual variograms, while the blue line shows the fitted exponential variogram used to compute
the Kriging predictions. (b) Empirical temporal variogram, computed as the phase variance of the PS interferograms with increasing temporal baselines.
The color of the dots encodes the date of the master SLC used in computing that interferogram, the black dots show the mean variogram over the set of all
interferograms, and the gray ribbon is its standard deviation. The blue line shows an exponential variogram model fit, which is used to generate the temporal
covariance matrices used in inversion.

TABLE II

BIAS AND STANDARD DEVIATION OF THE RESIDUAL DISPLACEMENT
RATE IN m/day EXTRACTED FROM A SET OF PS LOCATED OUTSIDE

OF THE GLACIER AND ASSUMED NOT TO BE

UNDERGOING DISPLACEMENT

deviation of the displacement estimates and calculated over all
times and locations.

B. Temporal Inversion

As explained in Section II-C, it is assumed that the APS
correction using regression-Kriging removes the spatial cor-
relation of pixels; only the temporal correlation of pixels

along the stack, attributed to the residual APS, described by
�z,atm,t , and the decorrelation, described by �z,decorr, must be
considered in the GLS inversion, which can now be performed
pixel by pixel.

1) Temporal Covariance Model: The Brownian coherence
decay model parameters τ and γ0 were computed using a
subset of the interferograms. These estimates are useful to
quantify the rapidity of the decorrelation process and are
used to construct the covariance matrix �z,decorr, as described
in Section II-C. The estimates of γ0 and τ are plotted as
geocoded maps overlaid on a topographic map in Fig. 7.

The second component of the temporal covariance is the
covariance of the APS, assuming that the spatiotemporal
separability of the APS statistics �y,atm,t is estimated from
a temporal variogram using a set of PS interferograms
with the increasing temporal baselines. Using this method,
the variogram at lag t corresponds to the phase variance
computed for all interferograms with a temporal baseline t ,
as shown in Fig. 2. The resulting temporal variogram is shown
in Fig. 5(b) along with a curve showing the fitted exponential
variogram model.

2) Performance of Pixelwise GLS Inversion: The pixel-
wise GLS inversion performance is tested by the same
cross-validation procedure described in Section IV-A. The
phases at the same set of points described above are extracted,
converted in displacement velocities, and shown in Fig. 6,
in the rows named OLS, Coh, APS + Coh, and APS that



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAFFELLI et al.: GEOSTATISTICAL ANALYSIS AND MITIGATION OF THE APSs 15

Fig. 6. Histogram of the estimated velocities at the nonmoving location for
different combinations of APS correction and time-series inversion methods.
Each column corresponds to a spatial APS correction method: kriged is
obtained using regression-Kriging, lm using the stratified APS only, while
in the column unprocessed, no spatial APS correction is applied. Across
rows, different temporal covariance models are used for the GLS time-series
inversion. In APS, only the temporal covariance of the APS is considered; in
Coh, only the covariance of the temporal decorrelation process is considered,
while APS + Coh uses both. In OLS, no covariance model is used, while in
No, the interferometric phases are converted into velocities.

represent four inversion approaches using different temporal
covariance matrices.

1) OLS: OLS inversion—the temporal covariance matrix is
set to the identity matrix.

2) Coh: GLS inversion—temporal covariance only includes
the Brownian decorrelation model.

3) APS: GLS inversion—temporal covariance only includes
APS.

4) APS+Coh: GLS inversion—temporal covariance
according to (36).

The same plots are repeated across three columns (Kriged,
LM, and unprocessed), showing the combined effect of differ-
ent spatial APS removal techniques and temporal covariance
models.

The average velocity at the nonmoving location is expected
to be close to zero with a small variance, as they are derived
from the interferometric phases of the scatterers that do not
displace significantly at the timescales of the interferometric
baseline. Therefore, larger variances indicate a larger uncor-
rected APS contribution or a higher level of decorrelation
causing more phase noise.

An estimated velocity map is shown in Fig. 8 for a small
group of times. Three maps obtained without spatial APS
correction and using a pixelwise OLS inversion are shown
in Fig. 8(a). The same maps obtained with regression-Kriging
and an OLS inversion are shown in Fig. 8(b). Finally,

in Fig. 8(c), regression-Kriging is combined with GLS using a
temporal covariance considering both APS and decorrelation.

The temporal standard deviation of the estimates is shown
in Fig. 9(d)–(i).

V. DISCUSSION

A. Spatial Correction of APS

1) Selection of Stratified APS Model: The stratified APS
contribution is predicted by a linear model. It is hard to know
a priori which of the models listed in Table I is the most
suitable to the situation analyzed in this article.

Model selection was made using a statistical comparison,
as described in Section IV-A. Fig. 4(a) shows a statistical
summary of the AIC values, while Fig. 4(b) shows a similar
summary of R2 values.

The AIC values are only meaningful in the relative sense:
among the investigated models, the one with the lowest
AIC will have the best fit quality, in the ML sense [80].
As shown by the Box plot in Fig. 4(a), all models have a very
similar distribution of the AIC values over the interferograms
considered for the analysis, with the “Quadratic Height 2D”
model showing the best AIC and the higher R2 in Fig. 4(b).

The similar distributions of the AIC statistics across the
models are perhaps caused by multicollinearity between the
slant range distance and the height variables in the linear
regression, which is explained by the observation geometry
shown in Fig. 3: an increase in distance from the radar
corresponds to increasing terrain elevations. The presence of
multicollinearity is verified empirically in Fig. 10 by plotting r
against h for the points used in regression. The possibility
of multicollinearity seems realistic considering the correlation
of r and h. In this case, either regressor can be included in
the stratified APS model.

The 2-D model including height and azimuth angle was
chosen for regression-Kriging as it shown the highest R2

in Fig. 4(b).
The inclusion of the azimuth angle presumably increases the

model fit quality, because it can describe the lateral variations
in the APS due to the wide field of view of the radar. Despite
this, it only achieves a median R2 of 0.25 and an interquartile
range of 0.3. This means that for most interferograms, between
80% and 60% of the total phase variability is not explained
by stratification.

Considering the initial assumption of the APS being the
superposition of stratification and turbulence, this result means
that a majority of phase variability should be attributed to other
processes—likely turbulence—highlighting the importance of
statistical modeling.

The underwhelming performance of the APS stratification
models is also seen in Table II in the row where “Method”
is “lm” and “Stacking Approach” is “no.” Compared with
the uncorrected case, shown in the very last row of that
table, the estimation standard deviation is reduced by only
0.4 m/day, but is still of a magnitude comparable with the
glacier’s daily displacement.

These results are in contradiction with several studies
of APS correction in TRI [31], [41]–[47], [56], where a
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Fig. 7. Estimated (a) short-term coherence γ0 and (b) time constant τ parameters for the Brownian coherence decay model γ (�t) = γ0e�t/τ . The data were
obtained by fitting an exponential decay on average coherence maps binned by temporal baseline. The outline of Bisgletscher is shown as a black polygon.
(Basemap: [97]; swisstopo; outline: [100].)

stratification model is shown to reduce significantly both bias
and variance. However, these studies were sometimes per-
formed in less-challenging environments and for the purpose
of monitoring slower displacements, in most cases using a
single reference interferogram network.

In [41], a single reference interferogram network was con-
sidered, where interferograms are computed with respect to
one master acquisition, with the purpose of detecting very
small displacements. In that case, the scene under study was
located at distances between 0 and 1400 m from the radar;
thus, the total propagation path is almost 1/8 of the path
observed in the Bisgletscher scenario.

Similar considerations apply to [42], where the scene under
study is located much closer to the radar and interferograms
are computed with respect to a single reference acquisition.
The scenario considered in [44] and [56] is again similar, since
a single-reference interferogram network is considered and the
radar-scene distance is once more significantly smaller than
that in the Bisgletscher study. A similar situation is considered
in [45] and [46].

A single-reference interferogram network means that with
increasing temporal baselines, the effects of global or low-
spatial-frequency changes in the atmospheric propagation
speed become appreciable. This can be explained as follows:
weather-driven changes in the atmospheric water content and
especially changes the atmospheric pressure—the hydrostatic
delay—are presumably of lower spatial frequency than the
turbulent structures.

Moreover, these large-scale offsets are not likely to vary at
the timescale of the radar’s repetition rate, in the order of 2 min
for the present case study. Therefore, for short temporal base-

lines, the magnitude of the phase delay caused by turbulence—
mostly associated with turbulent mixing of wet air, the wet
delay—may be stronger than the stratification signal.

In contrast to these studies, Dematteis et al. [47] computed
interferograms between subsequent acquisitions. He reported
a good performance of the stratification model fit; however,
the author is using a longer repeat time of 16 min, almost
eight times as large as the one employed for the observation
of Bisgletscher. Other than this difference in the temporal
baseline, the observation geometry is different, as in the former
case, the radar is looking upward from a much lower elevation
(1500 m) toward the glacier located at higher altitudes, while
in the latter, the glacier is observed from almost the same
elevation as the glacier’s center but with the propagation path
crossing a valley.

2) Covariance Model for Turbulent APS: In Fig. 5(a),
the individual spatial variograms obtained from a number of
PS interferograms are shown as dots colored by the temporal
baseline. Under the separable covariance model, increases in
the temporal baseline can only scale or offset the spatial
variogram and not modify its shape [101].

In the experimental variograms, the shape changes with the
increasing temporal lags, as shown by the different shapes of
the upper and lower ranges of the standard deviation ribbon
plot. With the increasing temporal lags, an oscillation in the
middle at 2500-m lag is visible; this type of periodic structure
of the variogram is likely a combination of the hole effect
[102], which is observed for spatially periodic structures, and
of the anisotropy in the spatial correlation structure of the APS.

Moreover, the variation in the spatial variogram shape
as a function of temporal lags indicates the possibility of
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Fig. 8. Time-series of the estimated velocity maps for a subset of times. (From left to right) July 14 2:33, July 26 16:32, and August 2 11:36, central European
summer time (CEST). (a) No spatial APS correction and OLS solution for the velocity. (b) Spatial APS correction using regression-Kriging combined with
OLS inversion. (c) Spatial APS correction using regression-Kriging and velocity inversion with full covariance model (APS and decorrelation). The outline
of Bisgletscher is shown in black. (Basemap: [97]; outline: [100].)

space–time interactions. Given the relatively short repeat inter-
val, it is not surprising that these interactions may happen.
A classic example is Taylor’s hypothesis [33], [68], where tur-
bulent structures are transported by the wind without changing
their shape.

Despite the variability, suggesting instationarity, a separable
covariance model is still chosen as an approximation because
of its lower computational cost. Under this model, only one
spatial covariance function needs to be fit to the average of
individual spatial variograms. This function can be used to
predict the unobserved APS in all interferograms.

The average variogram is shown in the plot as a black
dashed line; the blue line shows an exponential variogram
fit. The average spatial variogram shows again the same
oscillation that was observed in the individual variograms,
especially in those at larger temporal lags. This is likely a
sign of periodic structures in the APS or of anisotropies. The
former could be caused by the phase unwrapping error, while
the latter suggest that a more comprehensive variogram model
including anisotropy could result in a better fit [103], [104].

A more sophisticated approach to spatial covariance mod-
eling has been suggested [75], where instead of stationary,
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Fig. 9. Standard deviation maps of the velocity estimates for different combinations of APS correction and velocity inversion methods. (From left to right)
No correction, stratified APS model, and regression-Kriging. From top to bottom: velocities estimated from single interferograms, OLS inversion, and GLS
inversion with the APS + Coh covariance model. (Basemap: [97].) (a), (b), and (c) Velocity estimate from single interferograms with (a) no APS correction,
(b) stratification model, (c) regression-Kriging. (d), (e), and (f) Velocity estimated using OLS timeseries inversion on a stack of interferograms corrected as
in (a), (b), and (c), respectively. (g), (h), and (i) Velocity estimated with GLS timeseries inversion on a stack of interferograms corrected as in (a), (b), and
(c), respectively.

isotropic covariance functions, the author proposed to use
IRF-k to fit nonstationary, anisotropic covariance functions.
The authors used this method to extrapolate the observed APS
from the PS to the rest of the scene.

In the case study presented by Butt, performed on another
interferometric time-series of the same Bisgletscher scene,
only an isotropic—albeit instationary—covariance function
was used in the interpolation.

3) Performance of Spatial APS Removal: The performance
of APS prediction and removal is evaluated in Fig. 6 in
the figure row named no. This is obtained by plotting the
histogram of the velocity estimates derived from the cor-
rected interferogram, evaluated at stable areas, as described
in Section II-B.

If no spatial APS correction is applied (column no of Fig. 6
and the last row of Table II), a large bias and standard deviation
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Fig. 10. Scatterplot illustrating the correlation between the slant range (r) and
height (h) used as regressors for several models of atmospheric stratification
listed in Table I.

are observed. The latter is almost as high as one half of the
expected maximum displacement of the glacier’s surface. If no
correction of the APS is applied, the estimated displacement
will be unreliable.

The large error variance is also visible in the standard devi-
ation map in Fig. 9(a). Interestingly, a minimum in standard
deviation is observed in the vicinity of the reference point.
This is because referencing the phase is able to mitigate part
of the APS thanks to its spatial correlation.

By subtracting an estimate of the stratified APS (column
lm of Fig. 6 and the second-to-last rows of Table II) a
reduction in phase variance is visible in comparison with the
uncorrected interferograms. However, the standard deviation
of the estimates is only reduced by one-third, as shown in
the summary statistics of Table II. This is also appreciated
in Fig. 9(b), where the overall variance is reduced. The latter
result is consistent with the poor performance of the stratified
APS model, as no model was capable to explain more than
30% of the phase variance of the APS. This is observed in
the R2 plot of Fig. 4(b). Thus, most of the observed phase
variation should be attributed to the turbulent APS or to other
unmodeled phase nuisances.

Compared with the uncorrected case, the subtraction of the
regression-Kriging estimates (column kriged of Fig. 6 and row
“kriged, no” of Table II) of the APS reduces the standard
deviation by three-quarters.

In Fig. 9(c), the standard deviation is lower overall: now
instead of using a single phase reference as in the uncorrected
reference case, a set of phase references—the locations of
the nonmoving PS—is used to extrapolate the APS using the
estimated covariance function.

An area of high estimation variance is still observed in the
center of the scene at the location of Bisgletscher. A part of
this variance is presumably due to natural variations in the
glacier’s surface speed. The remaining variance is the inherent
regression-Kriging prediction variance, which increases with
the increasing distance between the observations at the PS and
reconstruction locations.

In the case of the glacier, the average distance between
the pixels on the glacier surface and the nearest PS is larger
than that in the rest of the scene. A similar pattern was
seen in the theoretical variance maps obtained during the
regression-Kriging procedure.

A similar APS correction performance is observed in the
IRF-k approach described by Butt et al. [75]. This result is
expected given the fact that intrinsic random functions are
comparable with regression-Kriging if the covariance function
is estimated accounting for the nonstationarity [78], which
is partly obtained by removing the stratification trend before
variogram estimation.

B. Temporal Inversion

1) Temporal Covariance Model: The temporally correlated
noise in the interferogram phase vector is modeled as the sum
of a residual APS and the phase noise due to decorrelation. The
latter is described with a Brownian motion model, attributed
to the random motion of many scatterers in each resolution
cell, resulting in an exponential decay of the interferometric
coherence γ .

The estimated exponential decay parameters are shown
in Fig. 7. A very widespread of the decorrelation time constant
τ is noticeable in Fig. 7(b), probably due to the variety of
surfaces types, ranging from rocks to forests and glaciated
areas. Of interest in this analysis is the surface of the glacier,
outlined by the black polygon.

There, a time constant between 5 min and 2 h is observed.
This ensures reliable interferometric phases up to the temporal
baselines of approximately 1 h for the slower decorrelating
areas, assuming a minimum coherence threshold of 0.6. Given
the high probability of displacements producing phase wraps,
it is not advisable to include interferograms with large tempo-
ral baselines in the time-series inversion.

On the other hand, the spatial variability in the short-term
coherence γ0, which roughly corresponds to the mean coher-
ence at the shortest temporal baseline of 150 s, is lower
[see Fig. 7(a)]. Areas that show a short-term coherence loss
correspond to vegetation and regions of low backscatter inten-
sity. The estimate over the glacier’s tongue displays high
coherence, suggesting the suitability of the chosen repeat time
of 150 s for the study of its displacement.

The other component of the temporal covariance matrix
is represented by the temporally correlated contribution of
the APS, which is estimated by an empirical variogram,
as discussed in Section II-C. The experimental variogram is
displayed in Fig. 5(b); it appears that the semivariance rapidly
increases and settles at 90% of the sill after about 500 s,
such that, after this time, the APS can be effectively consid-
ered uncorrelated. However, significant variability is observed
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between the variograms computed at different dates (repre-
sented as different colors in the plot), presumably reflecting the
large variability in propagation conditions related to weather
changes.

The rapid settling of the vaiogram at the sill is
in contrast with the observation made by Iannini and
Monti Guarnieri [56], where the semivariance was observed
to increase up to a time lag of 5 days before settling to a
sill. The observation conditions were significantly different
in that case, since the targets of interest were much closer
to the radar (600 m versus 8 km for the Bisgletscher data
set) and measurements were performed at lower elevations.
Moreover, the variograms in that work were estimated without
removing the stratification trends, thus possibly explaining
the longer correlation time—up to five days—claimed by the
authors.

This result suggests that the APS is not significantly cor-
related with time at the timescales of the acquisition rate of
2.5 min. Specific experiments—for example, by observing a
single location at a high repeat interval—would be necessary
to better estimate the decorrelation time of the APS.

2) Performance of Pixelwise GLS Inversion: When both
components of the temporal covariance matrix are estimated,
the inversion for the estimated velocity is performed according
to (40). An assessment of inversion quality is made with the
same cross-validation method employed to evaluate spatial
APS removal, as shown in Fig. 6.

All temporal inversion approaches result in a lower variance
of residual velocities for stable areas than the inversion of the
velocity performed on the individual interferograms.

The differences in performance between the temporal
covariance models appear not to be significant, with both cases
considering either the decorrelation or the APS only showing
a very similar residual distribution as the OLS inversion. This
is quantified in Table II, where the bias and standard deviation
for the APS+Coh, Coh, and OLS covariance models are almost
identical for all spatial APS correction approaches.

Including the Brownian coherence decay model does not
affect the estimation of standard deviation and bias, because
these parameters are estimated using cross-validation on a set
of PS, which are not affected by temporal decorrelation.

Similarly, including the APS covariance model seems not
to reduce significantly the variance of the estimates. This
could be explained by the short temporal correlation, as shown
in Fig. 5(b): after 500 s, the semivariance attains a value very
close to the sill, implying that the APS is not significantly cor-
related with the close acquisitions. A higher sampling rate—
or equivalently shorter acquisition repeat times—is necessary
to observe temporal correlation, suggesting the potential for
future studies.

In the data set analyzed by this article, including the
temporal APS covariance model in the pixelwise inversion
does not appreciably change the estimation performance.
Therefore, the covariance model could be reduced to the one
used for spaceborne InSAR [39], where the APS is assumed
uncorrelated with time.

An analysis of the general pattern of the estimated LOS
velocity fields can be made considering the plots in Fig. 8.

In Fig. 8(a), the velocity maps were generated directly from
uncorrected interferograms, by converting the phases into daily
displacement velocities.

These maps appear to capture the spatial patterns of motion
known from previous optical observations, where the highest
velocities were observed at the glacier’s tongue and near the
upper and lower icefalls. However, an overestimation of the
displacement rates on the areas located outside of the glacier—
which should not move during the timespan covered by the
acquisitions—is observed. The overestimation is presumably
caused by the uncompensated APS.

The overestimation is reduced in Fig. 8(c), showing the
standard deviation of the estimates obtained by extrapolat-
ing the APS using regression-Kriging and then applying the
pixelwise GLS inversion with the APS+Coherence covariance
model. Note again that there is almost no difference in bias and
variance between the OLS and GLS estimates, which is not
surprising considering the small temporal correlation observed
in the variograms.

Finally, a visualization of the spatial distribution of correc-
tion and estimation quality is shown in Fig. 9 in the second
and third rows, which display the temporal standard deviation
of the velocity estimates for several combinations of APS
correction and covariance models used for the GLS inversion.

As seen in the velocity histograms in Fig. 6, there is no dif-
ference in the velocity-estimation variance across the solution
obtained combining regression-Kriging and an OLS inversion
[Fig. 9(f)] and the GLS solution considering the temporal
correlation due to the APS and to the decorrelation signal
[Fig. 9(i)]. This seems plausible given the short correlation
time of the APS, as determined by the means of the temporal
variogram in Fig. 5(b).

VI. CONCLUSION

This article presents a study on the estimation and correction
of the APS in Ku-band TRI. The APS is among the largest
factors affecting the precision of displacement estimates in
radar interferometry. While for spaceborne SAR interferom-
etry, a vast literature of approaches for APS modeling and
mitigation is available, and only few studies are dedicated to
the APS in TRI.

This article addresses several aspects of the modeling and
correction of APS for TRI. To do so, it proposes an expansion
of the common APS model tailored to TRI. The conventional
model—a combination of a stratified atmospheric contribution
and of a temporally uncorrelated, spatially correlated stochas-
tic term describing turbulence—is modified by allowing the
APS to be correlated with time to account for the short revisit
times. To reduce its complexity, the covariance structure of the
turbulent component is assumed to be stationary in space and
time and separable. Under this assumption, covariance model
parameters are fit by performing marginal spatial and temporal
variogram analysis on a large set of interferograms acquired
at different times.

This framework is the foundation of a method for APS
correction based on an interferogram stack, from which a
set of PSs unaffected by displacement is determined. The
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interferometric phase observations at these PSs—assumed to
contain solely an APS contribution—are used to extrapo-
late the APS to a regular grid covering the interferograms
using regression-Kriging, which accounts for both a model
of atmospheric stratification and for the spatial correlation
of the atmospheric turbulence. Since separable spatiotemporal
statistics are assumed, the interpolation is performed using a
single covariance function for the entire stack.

By this method, a phase-calibrated stack is obtained, where
the residual nuisances, namely, unmodeled APS and decor-
relation, are assumed spatially uncorrelated. In this manner,
a pixelwise GLS estimator using the temporal covariance
model can be applied to the phase-calibrated stack to estimate
the displacement rates. The advantage of considering the tem-
poral correlation structure lies in more accurate uncertainity
estimates for the displacement parameters.

The proposed approach is tested using a Ku-band radar data
set over the Bisgletscher, southwestern Swiss Alps. Regression
analysis using a set of PSs located on stable areas shows that
stratification models have a poor ability to explain a significant
portion of the phase variance caused by the APS, highlighting
the importance of statistical description of the turbulent APS.

Variogram analysis suggests that a separable spatiotemporal
covariance model is a sufficient approximation to obtain the
realistic displacement estimate and that the APS only shows
a weak correlation with time. The spatial covariance function
derived from this analysis is used for the regression-Kriging
APS phase calibration, whose performance is evaluated by
estimating the residual velocities at the locations known not
to be affected by displacements.

This analysis shows a significant reduction in phase vari-
ance after the regression-Kriging-based phase calibration. The
same performance analysis is repeated with the output of
the time-series inversion applied on calibrated interferograms,
obtaining a reduction in the residual phase variance at the
cost of a coarser temporal resolution caused by the simplified
displacement model. Because of the observed low tempo-
ral correlation of the noise in this case study, the use of
that correlation structure in the time-series inversion does
not improve estimation variance. This could be different in
situations of longer correlation times, which would require
carefully designed experiments to be observed.

REFERENCES

[1] J. Faillettaz, M. Funk, and C. Vincent, “Avalanching glacier insta-
bilities: Review on processes and early warning perspectives,” Rev.
Geophys., vol. 53, no. 2, pp. 203–224, Jun. 2015.

[2] A. Pralong and M. Funk, “On the instability of avalanching glaciers,”
J. Glaciol., vol. 52, no. 176, pp. 31–48, 2006.

[3] H. Röthlisberger and P. Kasser. (1981). Gletscher und Klima–
Glaciers et Climat, Jahrbuch der Schweizerischen Naturforschenden
Gesellschaft, Wissenschaftlicher 1978. [Online]. Available: https://pdfs.
semanticscholar.org/b352/2564d738593da09c8261be37933363613f57.
pdf

[4] W. Haeberli et al., “The kolka-karmadon rock/ice slide of
20 September 2002: An extraordinary event of historical dimensions
in north ossetia, russian caucasus,” J. Glaciol., vol. 50, no. 171,
pp. 533–546, 2004.

[5] A. Flotron, “Movement studies on a hanging glacier in relation
with an ice avalanche,” J. Glaciol., vol. 19, no. 81, pp. 671–672,
1977. [Online]. Available: https://www.cambridge.org/core/product/
identifier/S0022143000029592/typ%e/journal_article

[6] J. Faillettaz, A. Pralong, M. Funk, and N. Deichmann, “Evidence of
log-periodic oscillations and increasing icequake activity during the
breaking-off of large ice masses,” J. Glaciol., vol. 54, no. 187,
pp. 725–737, 2008. [Online]. Available: http://openurl.ingenta.
com/content/xref?genre=article&issn=0022-1430%&
volume=54&issue=187&spage=725 and http://www.ingentaconnect.
com/content/igsoc/jog/2008/00000054/00000187/art00%016

[7] H. Röthlisberger, “Sliding phenomena in a steep section of balmhorn-
gletscher, Switzerland,” J. Geophys. Res., vol. 92, no. B9, p. 8999,
1987.

[8] P. D. Canassy, J. Faillettaz, F. Walter, and M. Huss, “Seismic activity
and surface motion of a steep temperate glacier: A study on trift-
gletscher, switzerland,” J. Glaciol., vol. 58, no. 209, pp. 513–528,
2012.

[9] G. Luzi et al., “Monitoring of an alpine glacier by means of
ground-based SAR interferometry,” IEEE Geosci. Remote Sens.
Lett., vol. 4, no. 3, pp. 495–499, Jul. 2007. [Online]. Available:
http://ieeexplore.ieee.org/document/4271456

[10] A. Kääb, R. Wessels, W. Haeberli, C. Huggel, J. S. Kargel, and
S. J. S. Khalsa, “Rapid ASTER imaging facilitates timely assessment
of glacier hazards and disasters,” EOS, Trans. Amer. Geophys. Union,
vol. 84, no. 13, p. 117, 2003.

[11] A. Kääb et al., “Remote sensing of glacier- and permafrost-related
hazards in high mountains: An overview,” Natural Hazards Earth Syst.
Sci., vol. 5, no. 4, pp. 527–554, Jul. 2005.

[12] E. Berthier et al., “Surface motion of mountain glaciers derived from
satellite optical imagery,” Remote Sens. Environ., vol. 95, pp. 14–28,
Mar. 2005.

[13] A. Kääb, “Monitoring high-mountain terrain deformation from repeated
air- and spaceborne optical data: Examples using digital aerial imagery
and ASTER data,” ISPRS J. Photogram. Remote Sens., vol. 57,
nos. 1–2, pp. 39–52, Nov. 2002.

[14] T. A. Scambos, M. J. Dutkiewicz, J. C. Wilson, and
R. A. Bindschadler, “Application of image cross-correlation to the
measurement of glacier velocity using satellite image data,” Remote
Sens. Environ., vol. 42, no. 3, pp. 177–186, Dec. 1992.

[15] R. M. Goldstein, H. Engelhardt, B. Kamb, and R. M. Frolich, “Satellite
radar interferometry for monitoring ice sheet motion: Application to
an Antarctic ice stream,” Science, vol. 262, no. 5139, pp. 1525–1530,
Dec. 1993.

[16] A. L. Gray, N. Short, K. E. Mattar, and K. C. Jezek, “Velocities
and flux of the Filchner ice shelf and its tributaries determined from
speckle tracking interferometry,” Can. J. Remote Sens., vol. 27, no. 3,
pp. 193–206, Jun. 2001.

[17] T. Strozzi, A. Luckman, T. Murray, U. Wegmüller, and C. L. Werner,
“Glacier motion estimation using SAR offset-tracking procedures,”
IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11, pp. 2384–2391,
Nov. 2002.

[18] I. Joughin, R. Kwok, and M. Fahnestock, “Estimation of ice-
sheet motion using satellite radar interferometry: Method and
error analysis with application to humboldt glacier, greenland,”
J. Glaciol., vol. 42, no. 142, pp. 564–575, 1996. [Online].
Available: https://www.cambridge.org/core/product/identifier/
S0022143000003543/typ%e/journal_article

[19] B. T. Rabus and D. R. Fatland, “Comparison of SAR-interferometric
and surveyed velocities on a mountain glacier: Black rapids
glacier, alaska, U.S.A.,” J. Glaciol., vol. 46, no. 152, pp. 119–128,
2000.

[20] R. Michel and E. Rignot, “Flow of glaciar Moreno, Argentina, from
repeat-pass shuttle imaging radar images: Comparison of the phase
correlation method with radar interferometry,” J. Glaciol., vol. 45,
no. 149, pp. 93–100, 1999.

[21] K. E. Allstadt, D. E. Shean, A. Campbell, M. Fahnestock, and
S. D. Malone, “Observations of seasonal and diurnal glacier velocities
at mount rainier, Washington, using terrestrial radar interferometry,”
Cryosphere, vol. 9, no. 6, pp. 2219–2235, Dec. 2015.

[22] D. Voytenko et al., “Multi-year observations of Breiamerkurjökull, a
marine-terminating glacier in Southeastern iceland, using terrestrial
radar interferometry,” J. Glaciol., vol. 61, no. 225, pp. 42–54, 2015.

[23] T. H. Dixon et al., “Emerging technology monitors ice-sea interface
at outlet glaciers,” Eos, Trans. Amer. Geophys. Union, vol. 93, no. 48,
pp. 497–498, Nov. 2012.

[24] L. Noferini, D. Mecatti, G. Macaluso, M. Pieraccini, and C. Atzeni,
“Monitoring of belvedere glacier using a wide angle GB-SAR inter-
ferometer,” J. Appl. Geophys., vol. 68, no. 2, pp. 289–293, Jun. 2009.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

22 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

[25] D. Mecatti et al., “Remote sensing of glacier by ground-based radar
interferometry,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
Jul. 2007, pp. 4501–4504.

[26] D. Massonnet and K. L. Feigl, “Radar interferometry and its application
to changes in the Earth’s surface,” Rev. Geophys., vol. 36, no. 4,
pp. 441–500, Nov. 1998.

[27] M. Bevis, S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and
R. H. Ware, “GPS meteorology: Remote sensing of atmospheric water
vapor using the global positioning system,” J. Geophys. Res., vol. 97,
no. D14, p. 15787, 1992.

[28] R. F. Hanssen, “Atmospheric heterogeneities in ERS tandem SAR
interferometry,” Delft Univ., Delft, The Netherlands, Tech. Rep., 1998.

[29] R. N. Treuhaft and G. E. Lanyi, “The effect of the dynamic wet tro-
posphere on radio interferometric measurements,” Radio Sci., vol. 22,
no. 2, pp. 251–265, Mar. 1987.

[30] R. F. Hanssen, Radar Interferometry (Remote Sensing and Digital
Image Processing), vol. 2. Amsterdam, The Netherlands: Springer,
2001. [Online]. Available: http://www.iub.edu/~act/files/publications/
2004/04-12_LUCCPathways%_Impacts.pdf, http://link.springer.com/
10.1007/0-306-47633-9, and http://www.nature.com/doifinder/10.
1038/scientificamerican0297-46

[31] J. Jung, D.-J. Kim, and S.-E. Park, “Correction of atmospheric phase
screen in time series InSAR using WRF model for monitoring vol-
canic activities,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5,
pp. 2678–2689, May 2014.

[32] T. R. Emardson, M. Simons, and F. H. Webb, “Neutral atmospheric
delay in interferometric synthetic aperture radar applications: Statistical
description and mitigation,” J. Geophys. Res., Solid Earth, vol. 108,
no. B5, p. 2231, May 2003.

[33] F. Onn and H. A. Zebker, “Correction for interferometric synthetic
aperture radar atmospheric phase artifacts using time series of zenith
wet delay observations from a GPS network,” J. Geophys. Res.,
vol. 111, no. B9, pp. 1–16, 2006.

[34] S. Williams, Y. Bock, and P. Fang, “Integrated satellite interferometry:
Tropospheric noise, GPS estimates and implications for interferometric
synthetic aperture radar products,” J. Geophys. Res., Solid Earth,
vol. 103, no. B11, pp. 27051–27067, Nov. 1998.

[35] P. Basili, S. Bonafoni, V. Mattioli, P. Ciotti, and N. Pierdicca, “Mapping
the atmospheric water vapor by integrating microwave radiometer and
GPS measurements,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8,
pp. 1657–1665, Aug. 2004.

[36] Z. Li, J. P. Muller, P. Cross, P. Albert, J. Fischer, and R. Ben-
nartz, “Assessment of the potential of MERIS near-infrared water
vapour products to correct ASAR interferometric measurements,” Int.
J. Remote Sens., vol. 27, no. 2, pp. 349–365, Jan. 2006.

[37] Z. W. Li et al., “Correcting atmospheric effects on InSAR with MERIS
water vapour data and elevation-dependent interpolation model,” Geo-
phys. J. Int., vol. 189, no. 2, pp. 898–910, May 2012.

[38] Z. Li, E. J. Fielding, P. Cross, and R. Preusker, “Advanced InSAR
atmospheric correction: MERIS/MODIS combination and stacked
water vapour models,” Int. J. Remote Sens., vol. 30, no. 13,
pp. 3343–3363, Jul. 2009.

[39] P. S. Agram and M. Simons, “A noise model for InSAR time series,” J.
Geophys. Res., Solid Earth, vol. 120, no. 4, pp. 2752–2771, Apr. 2015.

[40] R. Jolivet et al., “Improving InSAR geodesy using global atmospheric
models,” J. Geophys. Res., Solid Earth, vol. 119, no. 3, pp. 2324–2341,
Mar. 2014.

[41] L. Pipia, X. Fabregas, A. Aguasca, and C. Lopez-Martinez,
“Atmospheric artifact compensation in ground-based DInSAR appli-
cations,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 1, pp. 88–92,
Jan. 2008. [Online]. Available: http://ieeexplore.ieee.org/document/
4383036/

[42] L. Noferini et al., “Permanent scatterers analysis for atmospheric
correction in ground-based SAR interferometry,” IEEE Trans. Geosci.
Remote Sens., vol. 43, no. 7, pp. 1459–1471, Jul. 2005.

[43] G. Luzi et al., “Ground-based radar interferometry for landslides
monitoring: Atmospheric and instrumental decorrelation sources on
experimental data,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 11,
pp. 2454–2466, Nov. 2004.

[44] A. M. Guarnieri, L. Iannini, and D. Giudici, “On the exploitation
of meteo information for atmospheric phase screen compensation in
GB-SAR interferometry,” in Proc. ESA Living Planet Symp., 2010.
[Online]. Available: https://ui.adsabs.harvard.edu/abs/2010ESASP.
686E.275M/abstract

[45] R. Iglesias et al., “Atmospheric phase screen compensation in
ground-based SAR with a multiple-regression model over mountain-
ous regions,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5,
pp. 2436–2449, May 2014.

[46] R. Iglesias et al., “Ground-based polarimetric SAR interferometry for
the monitoring of terrain displacement phenomena—Part I: Theoretical
description,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
to be published. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6981929 and http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6982213

[47] N. Dematteis, G. Luzi, D. Giordan, F. Zucca, and P. Allasia, “Monitor-
ing alpine glacier surface deformations with GB-SAR,” Remote Sens.
Lett., vol. 8, no. 10, pp. 947–956, Oct. 2017.

[48] P. W. Webley, G. Wadge, and I. N. James, “Determining radio wave
delay by non-hydrostatic atmospheric modelling of water vapour over
mountains,” Phys. Chem. Earth, Parts A/B/C, vol. 29, nos. 2–3,
pp. 139–148, Jan. 2004.

[49] J. P. M. Boncori and J. J. Mohr, “Statistical description of tropospheric
delay for InSAR: Overview and a new model,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., Jul. 2007, pp. 4483–4486.

[50] A. Ferretti, C. Prati, and F. Rocca, “Permanent scatterers in SAR
interferometry,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 1,
pp. 8–20, Jan. 2001.

[51] C. Werner, U. Wegmüller, T. Strozzi, and A. Wiesmann, “Interferomet-
ric point target analysis for deformation mapping,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., vol. 7, Jul. 2003, pp. 4362–4364.

[52] M. Crosetto, O. Monserrat, M. Cuevas-González, N. Devanthéry,
and B. Crippa, “Persistent scatterer interferometry: A review,” ISPRS
J. Photogram. Remote Sens., vol. 115, pp. 78–89, May 2016.

[53] D. G. Krige, “A statistical approach to some mine valuation and allied
problems on the Witwatersrand,” Dept. Sci. Eng., Univ. Witwatersrand,
Johannesburg, South Africa, 1951.

[54] A. Ferretti, C. Prati, and F. Rocca, “Nonlinear subsidence rate esti-
mation using permanent scatterers in differential SAR interferometry,”
IEEE Trans. Geosci. Remote Sens., vol. 38, no. 5, pp. 2202–2212,
Sep. 2000.

[55] A. Hooper, H. Zebker, P. Segall, and B. Kampes, “A new method
for measuring deformation on volcanoes and other natural terrains
using InSAR persistent scatterers,” Geophys. Res. Lett., vol. 31, no. 23,
Dec. 2004.

[56] L. Iannini and A. Monti Guarnieri, “Atmospheric phase screen
in ground-based radar: Statistics and compensation,” IEEE Geosci.
Remote Sens. Lett., vol. 8, no. 3, pp. 537–541, May 2011.

[57] D. Massonnet and T. Rabaute, “Radar interferometry: Limits and poten-
tial,” IEEE Trans. Geosci. Remote Sens., vol. 31, no. 2, pp. 455–464,
Mar. 1993.

[58] P. Rosen et al., “Synthetic aperture radar interferometry,” Proc.
IEEE, vol. 88, no. 3, pp. 333–382, Mar. 2000. [Online]. Avail-
able: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
838084

[59] P. Berardino, G. Fornaro, R. Lanari, and E. Sansosti, “A new algo-
rithm for surface deformation monitoring based on small baseline
differential SAR interferograms,” IEEE Trans. Geosci. Remote Sens.,
vol. 40, no. 11, pp. 2375–2383, Nov. 2002. [Online]. Available:
http://ieeexplore.ieee.org/document/1166596/

[60] R. Lanari et al., “An overview of the small baseline subset
algorithm: A DInSAR technique for surface deformation analysis,”
Pure Appl. Geophys., vol. 164, pp. 637–661, Apr. 2007. [Online].
Available: http://www.springerlink.com/index/10.1007/978-3-7643-
8417-3_2

[61] R. Snieder and J. Trampert, “Inverse problems in geophysics,”
in Wavefield Inversion. Vienna, Austria: Springer, 1999,
pp. 119–190.

[62] A. Tarantola and B. Valette, “Inverse problems—quest for information,”
J. Geophys., vol. 50, no. 1, pp. 159–170, 1982.

[63] B. M. Kampes, Radar Interferometry. Amsterdam, The Netherlands:
Springer, 2006. [Online]. Available: http://www.iub.edu/~act/files/
publications/2004/04-12_LUCCPathways%_Impacts.pdf
http://link.springer.com/10.1007/978-1-4020-4723-7

[64] H. A. Zebker and J. Villasenor, “Decorrelation in interferomet-
ric radar echoes,” IEEE Trans. Geosci. Remote Sens., vol. 30,
no. 5, pp. 950–959, Sep. 1992. [Online]. Available: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=175330

[65] R. Touzi, A. Lopes, J. Bruniquel, and P. W. Vachon, “Coherence
estimation for SAR imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 37, no. 1, pp. 135–149, Jan. 1999.

[66] E. Rodriguez and J. M. Martin, “Theory and design of interferometric
synthetic aperture radars,” IEE Proc. F Radar Signal Process., vol. 139,
no. 2, p. 147, 1992.

[67] F. Rocca, “Modeling interferogram stacks,” IEEE Trans. Geosci.
Remote Sens., vol. 45, no. 10, pp. 3289–3299, Oct. 2007. [Online].
Available: http://ieeexplore.ieee.org/document/4305374/



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAFFELLI et al.: GEOSTATISTICAL ANALYSIS AND MITIGATION OF THE APSs 23

[68] T. Gneiting, M. Genton, and P. Guttorp, “Geostatistical space-time
models, stationarity, separability, and full symmetry,” in Statistical
Methods for Spatio-Temporal Systems. London, U.K.: Chapman & Hall,
2006, pp. 151–175.

[69] V. K. Gupta and E. Waymire, “On Taylor’s hypothesis and dissipa-
tion in rainfall,” J. Geophys. Res., Atmos., vol. 92, pp. 9657–9660,
Aug. 1987.

[70] R. F. Hanssen, “High-resolution water vapor mapping from inter-
ferometric radar measurements,” Science, vol. 283, no. 5406,
pp. 1297–1299, Feb. 1999. [Online]. Available: http://www.ncbi.nlm.
nih.gov/pubmed/10037594

[71] M. G. Genton, “Separable approximations of space-time covariance
matrices,” Environmetrics, vol. 18, no. 7, pp. 681–695, Nov. 2007.

[72] R. S. Bivand, E. J. Pebesma, and V. Gómez-Rubio, Applied Spatial
Data Analysis With R (Use R), vol. 1. New York, NY, USA: Springer,
2008, p. 378.

[73] W. H. Greene, “The generalized regression model: Heteroscedasticity,”
in Econometric Analysis, 7th ed. London, U.K.: Pearson, 2012, ch. 9.

[74] H. Wackernagel, Multivariate Geostatistics. Berlin, Germany: de
Gruyter, 2003.

[75] J. Butt, A. Wieser, and S. Conzett, “Intrinsic random functions for
mitigation of atmospheric effects in terrestrial radar interferometry,” J.
Appl. Geodesy, vol. 11, no. 2, pp. 89–98, Jan. 2017.

[76] G. Matheron, “The intrinsic random functions and their
applications,” Adv. Appl. Probab., vol. 5, no. 03, pp. 439–468,
Dec. 1973. [Online]. Available: http://www.jstor.org/stable/1425829
http://cg.ensmp.fr/bibliotheque/public/MATHERON_Publication_
00180.pdf%%5Cnhttp://www.jstor.org/stable/1425829?origin=crossref

[77] K. G. van den Boogaart and A. Brenning, “Why universal
Kriging is better than IRFk-Kriging: Estimation of variograms
in the presence of trend,” Tech. Rep., 2001. [Online]. Avail-
able: https://pdfs.semanticscholar.org/b352/2564d738593da09c8261be
37933363613f57.pdf

[78] R. Christensen, “The equivalence of predictions from universal kriging
and intrinsic random-function kriging,” Math. Geol., vol. 22, no. 6,
pp. 655–664, Aug. 1990.

[79] N. Blaunstein and C. Christodoulou, Radio Propagation and Adap-
tive Antennas for Wireless Communication Links (Wiley Series in
Microwave and Optical Engineering), vol. 8. Hoboken, NJ, USA:
Wiley, Nov. 2006.

[80] H. Akaike, “A new look at the statistical model identification,” IEEE
Trans. Autom. Control, vol. AC-19, no. 6, pp. 716–723, Dec. 1974.

[81] H. A. Zebker, P. A. Rosen, and S. Hensley, “Atmospheric effects
in interferometric synthetic aperture radar surface deformation and
topographic maps,” J. Geophys. Res., Solid Earth, vol. 102, no. B4,
pp. 7547–7563, Apr. 1997.

[82] P. Legendre and L. Legendre, “Spatial analysis,” in Numerical Ecology,
2nd ed. Amsterdam, The Netherlands: Elsevier, 1998, p. 853.

[83] N. Bliznyuk, R. J. Carroll, M. G. Genton, and Y. Wang,
“Variogram estimation in the presence of trend,” Statist. Inter-
face, vol. 5, no. 2, pp. 159–168, 2012. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/PMC3378336, http://www.ncbi.
nlm.nih.gov/pubmed/378336, and http://www.intlpress.com/site/pub/
pages/journals/items/sii/content/vols/0005%/0002/a002/

[84] R. Caduff, A. Kos, F. Schlunegger, B. W. McArdell, and A. Wiesmann,
“Terrestrial radar interferometric measurement of hillslope deforma-
tion and atmospheric disturbances in the illgraben debris-flow catch-
ment, Switzerland,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 2,
pp. 434–438, Feb. 2014.

[85] L. Kristensen, C. Rivolta, J. Dehls, and L. H. Blikra, “GB-InSAR
measurement at the Åknes rockslide, Norway,” in Proc. Int. Conf.
Vajont, Padua, Italy, Oct. 2013.

[86] S. Tebaldini and A. Monti, “Methods and performances for multi-
pass SAR interferometry,” in Geoscience and Remote Sensing New
Achievements. Rijeka, Croatia: InTech, Feb. 2010, pp. 329–357.
[Online]. Available: http://cdn.intechopen.com/pdfs/10403/InTech-
Methods_and_performan%ces_for_multi_pass_sar_interferometry.pdf

[87] R. Caduff, F. Schlunegger, A. Kos, and A. Wiesmann, “A review
of terrestrial radar interferometry for measuring surface change in
the geosciences,” Earth Surf. Processes Landforms, vol. 40, no. 2,
pp. 208–228, Feb. 2015.

[88] P. Riesen, T. Strozzi, A. Bauder, A. Wiesmann, and M. Funk, “Short-
term surface ice motion variations measured with a ground-based
portable real aperture radar interferometer,” J. Glaciol., vol. 57, no. 201,
pp. 53–60, 2011.

[89] J. Biggs, T. Wright, Z. Lu, and B. Parsons, “Multi-interferogram
method for measuring interseismic deformation: Denali fault, alaska,”
Geophys. J. Int., vol. 170, no. 3, pp. 1165–1179, Sep. 2007.

[90] S. Samiei-Esfahany, J. E. Martins, F. van Leijen, and R. F. Hanssen,
“Phase estimation for distributed scatterers in InSAR stacks using
integer least squares estimation,” IEEE Trans. Geosci. Remote Sens.,
vol. 54, no. 10, pp. 5671–5687, Oct. 2016.

[91] T. Strozzi, U. Wegmüller, C. Werner, and A. Wiesmann, “Measurement
of slow uniform surface displacement with mm/year accuracy,” in Proc.
IEEE Int. Geosci. Remote Sens. Symp., Jul. 2000, pp. 2239–2241.

[92] S. Baffelli, O. Frey, and I. Hajnsek, “System characterization and
polarimetric calibration of the Ku-band advanced polarimetric inter-
ferometer,” in Proc. Eur. Conf. Synth. Aperture Radar, 2016, pp. 2–5.

[93] S. Baffelli, O. Frey, C. Werner, and I. Hajnsek, “Polarimetric calibration
of the Ku-band advanced polarimetric radar interferometer,” IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 4, pp. 2295–2311, Apr. 2018.
[Online]. Available: http://ieeexplore.ieee.org/document/8226855/

[94] C. L. Werner, A. Wiesmann, T. Strozzi, A. Kos, R. Caduff,
and U. Wegmüller, “The GPRI multi-mode differential interfero-
metric radar for ground-based observations,” in Proc. Eur. Conf.
Synth. Aperture Radar, 2012, pp. 304–307. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06217065

[95] A. G. Stove, “Linear FMCW radar techniques,” IEE Proc. F Radar
Signal Process., vol. 139, no. 5, p. 343, 1992.

[96] J. Beutel, B. Buchli, F. Ferrari, M. Keller, M. Zimmerling, and
L. Thiele, “X-SENSE: Sensing in extreme environments,” in Proc.
Design, Autom. Test Eur., Mar. 2011, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
5763236 and http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&
arnumber=5763236%&queryText%3D%28sensing+in+extreme+
environments%29%26openedRefine%ments%3D*%
26matchBoolean%3Dtrue%26rowsPerPage%3D3

[97] Federal Office For Topography (Swisstopo). Accessed: Dec. 2018.
[Online]. Available: https://www.geocat.ch/geonetwork/srv/ger/md.
viewer#/full_view/4c8c7c58%-61c7-4a61-8e7a-
6ffb95d183df/tab/complete

[98] U. Wegmüller, O. Frey, and C. L. Werner, “Point density reduc-
tion in persistent scatterer interferometry,” in Proc. Eur. Conf.
Synth. Aperture Radar, 2012, pp. 673–676. [Online]. Available:
http://ieeexplore.ieee.org/document/6217159/

[99] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
and C. Notredame, “Nextflow enables reproducible computational
workflows,” Nature Biotechnol., vol. 35, no. 4, pp. 316–319, Apr. 2017.

[100] Federal Office For Topography (Swisstopo). Geographical Names
swissNAMES3D. [Online]. Available: https://www.geocat.ch/
geonetwork/srv/ita/catalog.search#/metadata/ab24%e5cc-7f53-451a-
820a-f113fa545943

[101] D. Myers, “Estimating and modeling space-time variograms,” in Proc.
Joint Meeting 6th Int. Symp. Spatial Accuracy Assessment Natural
Resour. Environ. Sci., 15th Annu. Conf. Int. Environmetrics Soc., 2004.

[102] E. Gringarten and C. V. Deutsch, “Teacher’s aide variogram interpre-
tation and modeling,” Math. Geol., vol. 33, no. 4, pp. 507–534, 2001.

[103] A. Refice, A. Belmonte, F. Bovenga, and G. Pasquariello, “On the
use of anisotropic covariance models in estimating atmospheric DIn-
SAR contributions,” IEEE Geosci. Remote Sens. Lett., vol. 8, no. 2,
pp. 341–345, Mar. 2011.

[104] S. Knospe and S. Jonsson, “Covariance estimation for dInSAR
surface deformation measurements in the presence of anisotropic
atmospheric noise,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 4,
pp. 2057–2065, Apr. 2010.

Simone Baffelli (Student Member, IEEE) received
the B.Sc. and M.Sc. degrees in electrical engineering
from the Swiss Federal Institute of Technology
(ETH), Zürich, Switzerland, in 2011 and 2013,
respectively, and the Dr.Sc. (Ph.D.) degrees from
the Chair of Earth Observation and Remote
Sensing, Swiss Federal Institute of Technology,
in 2019.

His research interests include the use of
ground-based radar systems for the mapping of
surface displacement, the analysis and correction

of atmospheric phase screen in terrestrial differential interferometry, and the
processing, calibration, and applications of polarimetric terrestrial radar data.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

24 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Othmar Frey (Senior Member, IEEE) received the
M.Sc. degree (Hons.) in geomatic engineering from
ETH Zürich, Zürich, Switzerland, in 2002, and the
Ph.D. (Dr.sc. nat.) degree (Hons.) in radar remote
sensing from the University of Zurich, Zürich,
in 2010.

He is a tenured Senior Researcher and Lec-
turer with ETH Zürich, and also a Senior Scien-
tist with GAMMA Remote Sensing AG, Gümligen,
Switzerland. He has been working in this joint
academic/industry setting since 2011. From 2002 to

2010, he was a Research Associate with the Remote Sensing Laboratory,
University of Zurich. He has been active in various national and international
research projects, as a PI and Project Manager, as well as a Co-Investigator.
At GAMMA, he has also been active in the development of the Gamma
Software and in technical consulting related to SAR imaging and interfer-
ometric applications. He has been a member of the SAOCOM-CS Science
Expert Group, European Space Agency. His research encompasses 2-D and
3-D (tomographic) synthetic aperture radar (SAR) focusing techniques and
interferometric techniques for applications, such as 3-D forest mapping,
ground deformation monitoring (persistent scatterer interferometry/differential
tomography), and profiling the structure of snowpacks, using spaceborne,
airborne, and terrestrial radar sensors.

Dr. Frey received the Distinction Award and Prize from the Faculty of
Science, University of Zurich, for his Ph.D. thesis, in 2010, and he received the
ETH Medal for an outstanding M.Sc. thesis in 2002. He was a recipient of the
Third Place Student Paper Award at the 2010 EUSAR Conference in Aachen,
Germany, and he was a co-recipient of the Best Paper Award at the ISPRS
Workshop Laserscanning and Silvilaser 2007 in Helsinki, Finland. Since 2015,
he has been the Chair of the Swiss Chapter of the IEEE Geoscience and
Remote Sensing Society.

Irena Hajnsek (Fellow, IEEE) received the Diploma
degree (Hons.) from the Free University of Berlin,
Berlin, Germany, in 1996, and the Doctor degree
(Hons.) from Friedrich Schiller University Jena,
Jena, Germany, in 2001.

Since November 2009, she has been a Professor
of Earth Observation with the Institute of Envi-
ronmental Engineering, Swiss Federal Institute of
Technology (ETH) Zürich, Zürich, Switzerland, and,
at the same time, the Head of the Polarimetric
SAR Interferometry Group, Microwaves and Radar

Institute (HR), German Aerospace Center (DLR), Wessling, Germany. From
1996 to 1999, she was with DLR-HR. From 1999 to 2000, she was with the
Institut d’Electronique et de Telecommunications de Rennes, University of
Rennes 1, Rennes, France, for ten months, in the frame of the EC-TMR Radar
Polarimetry Network. In 2005, she was a Guest Scientist with the University
of Adelaide, Adelaide, Australia, for six weeks. She is the Science Coordinator
of German satellite mission TanDEM-X. Her main research interests are in
electromagnetic propagation and scattering theory, radar polarimetry, SAR and
interferometric SAR data processing techniques, and environmental parameter
modeling and estimation.

Dr. Hajnsek was a member of the ESA Mission Advisory Group of the
Seventh Explorer Mission CoReH2O from 2009 to 2013. Since 2013, she
has been a member of the IEEE Geoscience and Remote Sensing Society
Administrative Committee. She was a Technical Program Co-Chair of the
2012 IEEE International Geoscience and Remote Sensing Symposium in
Munich.


