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Abstract

A notable obstacle hindering widespread application of SAR tomography for 3D mapping of vegetation is the relatively
large number of acquisitions that are needed to obtain a high resolution and a good rejection of spurious responses in the
direction perpendicular to the line of sight. In this paper, we discuss the impact of different baseline constellations on
3-D mapping of vegetation volumes and the underlying topography in terms of tomographic focusing as well as classical
single-baseline repeat-pass interferometry. The effects are studied using two airborne tomography data sets at L- and

P-bands.

1 Introduction

SAR tomography is a maturing technique for 3-D mapping
in the microwave domain [1-13] with a notable difficulty,
in practice, given by the relatively large number of acqui-
sitions that are needed to obtain a high resolution and a
good rejection of spurious signals. Suggestions to reduce
the number of acquisitions were brought forward, recently,
e.g. by [14].

In this paper, we investigate, experimentally, which of the
(available) baseline constellations are useful in the context
of robust Capon beamforming and MUSIC focusing of a
forested area under the following conditions: (1) when the
number of acquisitions is reduced and (2) without intro-
ducing a model for the vegetation volume and the under-
lying ground. The experimental airborne tomography data
sets used for this purpose are summarized in Table 1. A
detailed description of the data sets, as well as the time-
domain-based tomographic focusing methods employed,
are found in [12] and [13], respectively.

For operational data acquisition scenarios not only the
number of baselines should be reduced but also a baseline
configuration that is optimal with respect to the mission’s
purpose has to be found; such as the extraction of a digital
elevation model below forest canopy, or the extraction of
vegetation parameters by means of multibaseline focusing
and analysis of SAR tomography data.
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P-band L-band

Carrier frequency 350 MHz 1.3 GHz
Chirp bandwidth 70MHz 94 MHz
Sampling rate 100 MHz 100 MHz
PRF 500 Hz 400 Hz
Ground speed 90 m/s 90 m/s
No. of data tracks 11+1 16+1
Nominal track spacing d,, 57 m 14 m
Horizontal baselines 40 m 10 m
Vertical baselines 40 m 10 m
Synthetic. ap.erture in 570 m 210 m
normal direction L
Nominal resolution in

_— 3m 2m
normal direction §,,
Approx. unambiguous height H 30 m 30 m

Table 1: E-SAR system specifications and nominal pa-
rameters of the tomographic acquisition patterns for both
multibaseline data sets at P-band and L-band.

With the help of the two multibaseline SAR data sets at
L- and P-bands, we extend our analysis regarding the po-
tential variation of the measured backscattering values of a
forest as a function of total baseline length and a varying
mean incidence angle.
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Figure 1: Vertical profiles of relative intensities from L-band tomographic data of a forest (Plot 1) averaged over a circular

sample plot of 300m? for the polarimetric channels HH (—), HV (

), and VV (-—), RCB, and MUSIC. In each row, the

following sequence of number of flight tracks (FT) is given, from left to right: (1) full SA (16 FT), (2) approx. half the
SA (8 FT), (3) the lower 4 flight tracks, and (4) the upper 4 flight tracks. For comparison, histograms of height differences
between the ALS DSM and the ALS DEM are underlaid as an external estimate of the distribution of tree heights.

2 Results

In Figs. 1 & 2, plots of vertical profiles of intensities are
presented (HH, HV, and VV channels) at L- and P-bands.
The focusing methods that were applied are robust Capon
beamforming and MUSIC beamforming. Each row con-
tains, from left to right, the following sequence of number
of flight tracks (FT) used in tomographic focusing: (1) full
synthetic aperture (L-band: 16 FT, P-band: 11 FT), (2) ap-
prox. half the synthetic aperture (L-band: 8 FT, P-band: 6
FT), (3) the lower four flight tracks, and (4) the upper four
flight tracks (see [13], Fig. 1 for a detailed description of
the acquisition geometry). Fig. 3 contains coherence and
phase histograms for two different baselines and varying
incidence angles from interferometric pairs of a forested
area at P-band.

3 Discussion

The tomographic intensity profiles remain rather stable
even if the total number of flight tracks is halved to 8 FT,
for L-band, and to 6 FT, for P-band, respectively. The in-
tensity profiles are also stable using both focusing meth-
ods, RCB and MUSIC. However, if the number of flight
tracks is further reduced to four acquisitions tomographic

focusing using the MUSIC algorithm delivers erroneous
vertical profiles of intensities for case (3) and (4) at L-band.
RCB shows a more robust behavior towards a reduction of
samples. As MUSIC is a subspace method, which relies
upon a separation of signal space and noise space, a to-
tal number of only four flight tracks does not provide an
adequate number of samples in cases of distributed scat-
terers, or if several backscattering sources occur within a
range resolution cell. The degradation is less pronounced
at P-band, presumably, due to the lower number of dom-
inant scattering sources occurring within one slant-range
resolution cell at that frequency.

The two smallest subapertures (4 flight tracks) consisting
of the outermost flight tracks can also be used to indicate
whether a change of the mean incidence angle of a tomo-
graphic acquisition is reflected in the vertical profiles of in-
tensities. Since for MUSIC beamforming, the tomographic
signal suffers from considerable degradation, in the case
where only 4 flight tracks are used, only the RCB-based
results are taken into account, here: for the given sample
plot 1, the vertical profiles do not change much.

In addition, the two multibaseline data sets provide an op-
portunity to assess the effect of variations of baselines or
incidence angles on repeat-pass interferometry. In Fig. 3,
an example of coherence histograms and respective inter-
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Figure 2: Vertical profiles of relative intensities from P-band tomographic data of a forest (Plot 1) averaged over a circular

sample plot of 300m? for the polarimetric channels HH (—), HV (

), and VV (-—), RCB, and MUSIC. In each row, the

following sequence of number of flight tracks (FT) is given, from left to right: (1) full SA (11 FT), (2) approx. half the
SA (6 FT), (3) the lower 4 flight tracks, and (4) the upper 4 flight tracks. For comparison, histograms of height differences
between the ALS DSM and the ALS DEM are underlaid as an external estimate of the distribution of tree heights.

ferometric phase histograms (relative to the topography)
is given for the VV-channel of interferometric pairs taken
from the P-band data set. It is interesting to note that there
is a tendency to phase estimates closer to the topography
under forest cover in the case where the sensor is looking
down steeply (near range) as well as for the larger baseline,
although the coherence is generally lower in these cases.
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Figure 3: Coherence histograms and histograms of interferometric phase relative to the topography within the forested
area for P-band, VV-Channel. Red: Near range, green: mid range, blue: far range. Coherence histograms for nominal
baselines of (a) around 57m and (b) around 114m. The respective phase histograms relative to topography are given in (c)
and (d).
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