
GPU-BASED PARALLELIZED TIME-DOMAIN BACK-PROJECTION PROCESSING FOR
AGILE SAR PLATFORMS

Othmar Frey
Gamma Remote Sensing

Switzerland

Earth Observation &

Remote Sensing, ETH Zurich

Email: frey@gamma-rs.ch

Charles L. Werner, Urs Wegmuller
Gamma Remote Sensing

Switzerland

Abstract—Agile SAR platforms such as an automobile require
a flexible SAR processing scheme to account for nonlinear sensor
trajectories during the synthetic aperture. In this contribution,
a parallelized implementation of a time-domain back-projection
SAR focusing algorithm based on NVIDIA’s CUDA GPU comput-
ing framework is presented and discussed using a car-borne SAR
data set. The processing performance is assessed using different
hardware.

In addition, a pre-processing scheme is described that allows
for full 3-D motion compensation, yet staying conveniently
in conventional slant-range / azimuth geometry of single-look
complex SAR images.

Index Terms—Synthetic aperture radar (SAR), ground-based
SAR system, SAR imaging, SAR interferometry, car-borne SAR,
CARSAR , GPU, CUDA, Parallelization, Azimuth focusing,
Nonlinear Sensor Trajectory

I. INTRODUCTION

Agile synthetic aperture radar (SAR) platforms such as
an automobile require a flexible SAR processing scheme to
account for nonlinear sensor trajectories during the synthetic
aperture. Recently, we have presented first results of such a
car-borne SAR and InSAR experiment [1].

In this contribution, we present and assess a new parallelized
implementation of a time-domain back-projection algorithm
(TDBP) [2], [3] on a graphics processing unit (GPU) based on
NVIDIA’s Compute Unified Device Architecture (CUDA) ap-
plication programming interface. We compare the processing
performance of two implementations of the TDBP focusing
algorithm, (1) an ANSI-C implementation on a CPU, and (2)
a CUDA implementation of the same algorithm tested on three
different classes of NVIDIA GPU devices.

In addition, a pre-processing scheme is described that allows
for full 3-D motion compensation (3-D sensor coordinates and

TABLE I
GPRI-II GROUND BASED RADAR SYSTEM SPECIFICATIONS FOR

SYNTHETIC APERTURE RADAR MODE.

Carrier frequency 17.2 GHz

Chirp bandwidth 200 MHz

Type FMCW

Chirp length 0.001 s

Range 3dB beamwidth 18 deg

Azimuth 3dB beamwidth 16.9 deg

Ground speed 21 m/s

Interferometric baseline 0.25 m

Off-nadir angle 110 deg

3-D reconstruction grid) during TDBP processing, yet staying
conveniently in conventional slant-range / azimuth geometry
of single-look complex (SLC) SAR images.

The example data set used here to verify and assess the
parallelized CUDA implementation of the time-domain back-
projection algorithm was taken from a slightly curved road
using a modified configuration of the GPRI-II ground-based
radar [4], [5] mounted on the roof-top of a car (see [1] for more
details). An overview of the most relevant system parameters
is shown in Table I.

II. METHODS

A. Range Compression

The car-borne SAR system used in this experiment (see [1])
is based on the linear FMCW-type GPRI-II radar [4], [5]. This
radar operates in dechirp-on-receive mode, i.e. the received
signal s(t) is mixed with the reference signal. This transforms

1132978-1-4799-5775-0/14/$31.00 ©2014 IEEE IGARSS 2014

Fig. 1. Example of SLC (range/azimuth) geometry- type 3-D reconstruction grid obtained after DEM-resampling procedure.

the data to a deramped signal sd of the form [6]:

sd(t) = s∗(t)exp(j2πfst+ jπγt2), (1)

where fs is the start frequency of the chirp and γ is the chirp
rate. The phase of the resulting deramped signal is

ϕd(t) = (2πfstn − πγt2n) + 2πγtnt, (2)

which can be directly related to range distance via a range
FFT. tn is the two-way time delay to a target n. For azimuth
focusing of the data the residual video phase has to be
compensated [7] and also the non-validity of the start-stop
approximation must be taken into account [8].

B. Processing Steps to Prepare a DEM-based Image Recon-

struction Grid in Range/Azimuth (SLC) Geometry

The following pre-processing scheme leads to a 3-D re-
construction grid with equispaced sampling in range and
azimuth—i.e., a standard SLC data product—while still allow-
ing for full 3-D motion compensation within TDBP azimuth
focusing. It essentially involves resampling the DEM to a grid
which is non-uniformly sampled in terms of its topocentric
coordinates, however, which is sampled uniformly when con-
sidering its projection to the range-azimuth domain. The pre-
processing sequence consists of the following steps:

1) Parameterize sensor track using orthogonal regression.
2) Estimate Doppler centroid frequency from range-

compressed data.
3) Create a multilook geometry that serves to calculate the

look-up table based SLC-type reconstruction grid more

efficiently.
4) Create a geocoding lookup table based on a digital

elevation model (DEM) and the parameterized sensor
trajectory. The lookup table contains a floating point
range and azimuth coordinate for each position in the
DEM.

5) Invert the lookup table. The resulting inverted look-up
table contains a floating point pixel coordinate of the
DEM grid for each slant-range / azimuth coordinate.

6) Inverted look-up table is applied to 3-D DEM coordi-
nates to obtain approximate topography information in
the multi-looked geometry.

7) Upsampling of X, Y, and Z coordinates from MLI to
SLC geometry.

8) Refinement of 3-D grid positions such that range dis-
tances match (to double precision) the nominal range
distances.

See Fig. 1 for an example of such a resampled 3-D reconstruc-
tion grid with equispaced sampling in range and azimuth. The
resolution is reduced for visualization purposes.

C. CUDA Implementation of TDBP Azimuth Focusing

The newly developed parallelized CUDA-based implemen-
tation of the TDBP algorithm on a GPU takes advantage
of the single instruction-multiple data (SIMD) nature of the
time-domain back-projection algorithm. The NVIDIA CUDA
Fast Fourier Transform (FFT) library (cuFFT) [9] is used
to implement the FFT-interpolation-based upsampling [10] of
each echo. The SIMD-type operations during the actual back-

1133

TABLE II
COMPARISON OF PROCESSING TIME OF CPU-BASED IMPLEMENTATION VS. 3 DIFFERENT CLASSES OF NVIDIA GPUS.

Processing unit (V)RAM No. of cores Processing time Speedup vs. CPU / GT 650M

CPU: 2.6 GHz Intel Core i7 8 GB 4 (1 used) 1539 s 1 -

GPU: NVIDIA GeForce GT 650M 1 GB 384 315 s 4.9 1

GPU: NVIDIA GeForce GTX 660 Ti 2 GB 1344 79 s 19.5 4.0

GPU: NVIDIA Tesla K20c 4 GB 2496 51 s 30.2 6.2

projection operation exploit the optimized CUBLAS complex
vector addition available in the NVIDIA CUDA Basic Linear
Algebra Subroutines (cuBLAS) library [11], which is a GPU-
accelerated implementation of the complete standard BLAS
library.

In the current implementation the core processing sequence
of the GPU-parallelized TDBP azimuth focusing consists of
the following steps:

1) Read the sensor position and velocity data.
2) Read the coordinates of the image reconstruction grid.
3) Allocate memory on the GPU device for the SLC image

block.
4) Allocate memory on the GPU device for the radar

echo data, Doppler centroid values, and phase correction
values per echo.

5) Start looping over radar echoes to perform back-
projection.

a) Update range- azimuth-varying Doppler centroid
values to match the current radar echo in the loop.

b) Update range varying phase correction values,
which are updated for each azimuth echo.

c) Copy the radar echo(s) to the device memory.
d) FFT-based interpolation of the radar echo on the

GPU device using the cuFFT library.
e) Baseband to bandpass conversion of upsampled

echo (introduce the time delay).
f) Calculate the range distances between the current

position and the coordinates of the reconstruction
grid.

g) Back-project the interpolated echo to an interme-
diate SLC image grid.

h) Update the SLC image with the current back-
projected data stored in the intermediate image
grid.

6) End of back-projection loop.
7) Coherent baseband conversion of SLC image.

8) Copy the focused SLC image from the GPU device
memory to the host memory.

III. RESULTS

In Table II a complete overview of the tested hardware
and the corresponding processing times and speedup factors
is given. The speedup factor obtained when comparing the
two consumer-type NVIDIA cards GeForce GT 650M, found
in laptop computers, and the NVIDIA GeForce GTX 660 Ti,
designed for desktop computers, amounts to 315s / 79s = 4.
The measured speedup scales roughly linearly with the 3.5
times larger number of available CUDA cores. Similarly, the
speedup factor between GeForce GT 650M (Speedup : 315
/ 51 = 6.2 times) scales approximately linearly with the 6.5
times larger number of CUDA cores (2496 vs 384) of the Tesla
K20C and the GeForce GT 650M card, respectively.

Compared to the ANSI C CPU-based implementation of the
time-domain back-projection algorithm a maximal speedup of

a factor of about 30 is achieved with the Tesla K20C GPU.
Fig. 2 shows a visualisation of the processed SAR data taken

from the CARSAR experiment [1]. The slightly curved sensor
path is the lower-left part of the path highlighted in yellow
color.

IV. DISCUSSION & CONCLUSION

A CUDA-based implementation of a time-domain back-
projection (TDBP) algorithm for highly parallelized SAR
azimuth focusing on GPUs was presented and assessed in
terms of processing efficiency.

Already by using consumer-class GPUs found in laptops
and desktop computers notable speedups of a factor of about
5 to 20 compared to the processing time on one CPU were
obtained for the CUDA-implementation of the TDBP azimuth
focusing algorithm. Using the high-performance Tesla K20c
GPU card, a maximum speedup factor of about 30 was
reached. In this case the processing time required for SAR
focusing is in the same order of magnitude as the acquisition

1134

Fig. 2. Example SAR imagery of a slope of a valley taken from the car-borne interferometric SAR system. The SAR data is geocoded for 3-D visualization
on top of orthophoto imagery and a high-resolution DEM (c©swisstopo) of the area.

time for the car-borne SAR data, at hand, where the vehicle
was driving at an average ground speed of 21 m/s.

GPU-based TDBP focusing is an attractive processing
scheme for SAR data acquisitions involving curvilinear sensor
trajectories. Examples include airborne SAR data acquired
from highly nonlinear sensor trajectories [2] or focusing of
car-borne SAR acquired along curvilinear roads for InSAR
applications [1]. Other potential applications of the presented
implementation include testing and reference processing for
azimuth focusing of atypical SAR modes, such as e.g. geosyn-
chronous SAR or blimp-borne SAR.

REFERENCES

[1] O. Frey, C. L. Werner, U. Wegmuller, A. Wiesmann, D. Henke, and
C. Magnard, “A car-borne SAR and InSAR experiment,” in Proc. IEEE
Int. Geosci. Remote Sens. Symp., 2013, pp. 93–96.

[2] O. Frey, C. Magnard, M. Rüegg, and E. Meier, “Focusing of airborne
synthetic aperture radar data from highly nonlinear flight tracks,” IEEE
Trans. Geosci. Remote Sens., vol. 47, no. 6, pp. 1844–1858, June 2009.

[3] O. Frey, E. Meier, and D. Nüesch, “Processing SAR data of rugged
terrain by time-domain back-projection,” in SPIE Vol. 5980: SAR Image
Analysis, Modeling, and Techniques X, 2005.

[4] C. Werner, T. Strozzi, A. Wiesmann, and U. Wegmuller, “A real-aperture
radar for ground-based differential interferometry,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., vol. 3, July 2008, pp. 210–213.

[5] T. Strozzi, C. Werner, A. Wiesmann, and U. Wegmuller, “Topogra-
phy mapping with a portable real-aperture radar interferometer,” IEEE
Geosci. Remote Sens. Lett., vol. 9, no. 2, pp. 277–281, Mar. 2012.

[6] M. Soumekh, Synthetic Aperture Radar Signal Processing: with MAT-
LAB Algorithms. John Wiley & Sons, 1999.

[7] W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic
Aperture Radar: Signal Processing Algorithms. Artech House Inc.,
1995.

[8] A. Ribalta, “Time-domain reconstruction algorithms for FMCW-SAR,”
IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 3, pp. 396–
400, May 2011.

[9] “CUFFT library user’s guide,” NVIDIA Corporation, Tech. Rep., 2013,
http://docs.nvidia.com/cuda/cufft.

[10] D. Fraser, “Interpolation by the FFT Revisited - an Experimental
Investigation,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, no. 5, pp. 665–675, May 1989.

[11] “CUBLAS library user guide,” NVIDIA Corporation, Tech. Rep., 2013,
http://docs.nvidia.com/cuda/cublas.

1135

