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Abstract: We compare tropospheric delays from Global Navigation Satellite Systems (GNSS) and
Synthetic Aperture Radar (SAR) Interferometry (InSAR) in a challenging mountainous environment in
the Swiss Alps, where strong spatial variations of the local tropospheric conditions are often observed.
Tropospheric delays are usually considered to be an error for both GNSS and InSAR, and are typically
removed. However, recently these delays are also recognized as a signal of interest, for example for
assimilation into numerical weather models or climate studies. The GNSS and InSAR are techniques
of complementary nature, as one has sparse spatial but high temporal resolution, and the other very
dense spatial coverage but repeat pass of only a few days. This raises expectations for a combination
of these techniques. For this purpose, a comprehensive comparison between the techniques must
be first performed. Due to the relative nature of InSAR estimates, we compare the difference slant
tropospheric delays (dSTD) retrieved from GNSS with the dSTDs estimated using Persistent Scatterer
Interferometry (PSI) of 32 COSMO-SkyMed SAR images taken in a snow-free period from June to
October between 2008 and 2013. The GNSS estimates calculated at permanent geodetic stations
are interpolated to the locations of persistent scatterers using an in-house developed least-squares
collocation software COMEDIE. The Pearson’s correlation coefficient between InSAR and GNSS
estimates averaged over all acquisitions is equal to 0.64 and larger than 0.8 for approximately half
of the layers. Better agreement is obtained mainly for days with high variability of the troposphere
(relative to the tropospheric conditions at the time of the reference acquisition), expressed as standard
deviations of the GNSS-based dSTDs. On the other hand, the most common feature for the days
with poor agreement is represented by very stable, almost constant GNSS estimates. In addition,
there is a weak correlation between the agreement and the water vapor values in the area, as well
as with the number of stations in the closest vicinity of the study area. Adding low-cost L-1 only
GPS stations located within the area of the study increases the biases for most of the dates, but the
standard deviations between InSAR and GNSS decrease for the limited area with low-cost stations.
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1. Introduction

Space-borne Synthetic Aperture Radar Interferometry (InSAR) is used for monitoring of land
surface deformation, supporting the assessment of geohazards such as rockslides, landslides,
and rockfalls [1–4]. To take a full advantage of InSAR, the deformation-related phases must
be accurately separated from other phase contributions, in particular residual topography and
atmosphere-induced phases. Persistent Scatterer Interferometry (PSI) is widely used presently to
extract slow deformation taking place gradually over the span of several years. In this technique,
the so-called persistent scatterers (PS), i.e., pixels that exhibit long-term temporal phase coherence,
are identified in the imaged area. It has been shown in earlier works that the atmospheric phases can be
effectively isolated at PS locations by using appropriate spatio-temporal filtering of the interferometric
phases [5–8].

While the tropospheric path delays are typically considered a nuisance for InSAR/PSI-based
deformation mapping, they are also a signal of interest, since the interferometric SAR data inherently
contains temporally sparse but spatially dense sampling of tropospheric path delay differences [9–14].
On the other hand, the Global Navigation Satellite Systems (GNSS) permanent stations provide
temporally dense but spatially sparse estimation of tropospheric parameters. This gives rise to the
idea that the two data sources and techniques are of complementary nature and may potentially be
combined to improve the spatio-temporal retrieval and mitigation, in the InSAR case, of tropospheric
path delays.

The InSAR and GNSS tropospheric modeling have already been connected in multiple ways.
To mitigate the tropospheric errors in InSAR, various studies have proposed the use of external data
sources, such as numerical weather models (NWM) [15–19] and GNSS [20–25]. The limitation of using
the NWM models or GNSS estimates is too sparse resolution of just several or tens of kilometers.
The InSAR tropospheric estimates can be obtained using for example PSI technique with very high
spatial resolution that can capture atmospheric variations in much more detail than any model based
on GNSS or NWM. Moreover, even though the troposphere is a non-dispersive medium, the differences
between the delays from different techniques may be correlated with the usage of different wavelength,
i.e., X or C-band for InSAR and L-band for GNSS. The sensitivity of the X-band is higher than for
L-band as the wavelength is much shorter, which may explain the differences between the delays
estimated with both techniques.

On the other hand, a first guess of the tropospheric delay based on GNSS data from a dense
network could be beneficial for PSI analysis in alpine conditions, where spatial (layover) and temporal
(snow-cover) gaps in the interferograms make spatial-temporal phase unwrapping particularly
challenging [26]. Moreover, if the tropospheric layering is correlated in time (and not independent
from date to date, as commonly assumed in PSI processing), it is hard to separate atmospheric phase
contributions from displacement phase with PSI only. To support these two cases, a GNSS-based
a-priori estimate with low spatial resolution could be sufficient, without considering turbulence.
Similar conclusions are drawn in [23] where the GNSS estimates from a dense network in California
are applied into InSAR processing.

The GNSS estimates are also often used in InSAR processing to convert relative tropospheric
estimates into absolute ones [27–29]. For this purpose, a careful analysis of the data and an interpolation
model is necessary, because the InSAR points and GNSS stations locations do not necessarily coincide.
Having a better understanding of the differences between InSAR and GNSS estimates can also help in
combining the two techniques.

For all the above-mentioned applications, the first step is a comprehensive comparison of the
InSAR and GNSS data, which has been made in several studies. For example, ref. [21] compares
the wet delay estimates of SAR (ERS-1 and ERS-2) and GNSS. The authors use only the estimates
for one single GPS station for 5 pairs of acquisitions. The pairs of dates were chosen to have similar
wind speed and direction. For such conditions, the results show significant correlation between both
techniques. They conclude that GPS tropospheric delays combined with the wind speed information
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could be used to provide an a-priori estimate of the amount of tropospheric delay variation in an
interferogram. Ref. [22] shows that a linear relationship between the tropospheric delays and height
can be confirmed in both InSAR and GNSS data of the L’Aquila area during 6.3Mw earthquake.

The goal of our study is to compare the tropospheric delay estimates from PSI and GNSS
techniques in a case study of alpine area with strong topographic variation. We use an interferometric
stack of SAR data acquired by the space-borne X-band SAR system COSMO-SkyMed. The GNSS-based
estimates are interpolated to the locations of PS using the least-squares collocation software COMEDIE
(Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Path delays)
developed at ETH Zürich [30–34]. In [35] we have interpolated a sparse data in the alpine area into
high-resolution 20 m grid. Three data sources were evaluated, namely NWM, GNSS, and low-cost
GPS. The GNSS estimates have been proven to provide the interpolations with the highest accuracy
regarding the reference data and the low-cost GPS estimates have the highest variability. The research
area of this study has been extended from [35] to cover the entire footprint of the ordered SAR images.
The GNSS and InSAR estimates are compared for this region for the first time.

This introduction is followed by Section 2 where we describe the data sources: SAR and GNSS.
Section 3 presents the methods of calculating the tropospheric delays from both data sources.
Section 4 presents the comparisons between the two techniques and investigates the reasons for
different agreements between the estimates and Section 5 summarizes the study.

2. Data

We compare the tropospheric delays from two different space-borne techniques, namely SAR and
GNSS. Figure 1 shows the geometry of the propagated signal in the neutral atmosphere. The SAR
satellites’ orbits are located at around 800 km, while for GNSS it is around 20,000 km (depending on
the system). The chosen X-band SAR signal propagates only along a very narrow range of incidence
angles (here between 24.5◦ and 25.4◦), whereas, the GNSS estimates are derived from a large set of
views to the satellites spread over a wide range of different directions (here the zenith angles take
values from 0◦ to 87◦).

The test site selected for this work is a mountainous area of approximately 15 km × 25 km located
in the canton of Valais, over Matter Valley, Swiss Alps. The altitudes of the area vary from around
1100 m to 4100 m above mean sea level (amsl). This region is chosen for two reasons: (a) the high
mountains are a special case as the high relief is causing large spatial and temporal variability of the
atmospheric signals and (b) this particular region has active landslides, rock slides and rockfalls [7].

Figure 1. The geometry of SAR and GNSS propagated signal.
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2.1. Synthetic Aperture Radar (SAR)

The interferometric data stack used in this work consists of 32 COSMO-SkyMed stripmap SAR
repeat-pass acquisitions in a snow-free time period from June to October between 2008–2013. All the
acquisitions were taken at a similar time, around 17:45 UTC. COSMO-SkyMed is an X-band satellite
with the corresponding wavelength of λ = 3.12 cm. For such frequencies, ionospheric effects are
often ignored [36], thus, we assume that the atmospheric phase component comes from the neutral
atmosphere only. The footprint of the satellite image is depicted in Figure 2 on top of the topography
of the area (yellow parallelogram).

2.2. Global Navigation Satellite Systems

We focus on exploring the existing network of GNSS stations instead of setting up new stations.
Figure 2 shows the permanent GNSS stations in the vicinity of the selected area. We test both the
geodetic permanent stations (red dots) and low-cost L1-only GPS permanent stations (green stars).

Figure 2. Locations of the GNSS stations in the alpine region of Valais superimposed with NASA
ASTER Global Digital Elevation Model (GDEM). The yellow parallelogram indicates the footprint of
COSMO-SkyMed SAR acquisitions used in this study.

2.2.1. Geodetic Stations

The GNSS zenith tropospheric delays (ZTD) and horizontal gradients are estimated with
1 h resolution by the Swiss Federal Office of Topography (swisstopo (www.swisstopo.admin.ch)).
Two networks are used: the Automated GNSS Network for Switzerland (AGNES) and permanent
GNSS network of ETH Zürich installed in the alpine region of Valais within the framework of the project
Coupled Seismogenic Geohazards in Alpine Regions (COGEAR (www.mpg.igp.ethz.ch/research/
geomonitoring/cogear-gnss-monitoring.html)). In total, for the chosen period, up to 72 geodetic
stations are used. Depending on the date, from five to 12 geodetic stations are operated close to the
study area. The stations in the area are located at heights from 592 m to 3584 m asml. The heights are
presented in Figure 3. The ZTDs are calculated in a double-difference post-processing mode from GPS
and GLONASS observations using a development version 5.3 of Bernese software [37]. The cut-off
elevation angle is set up to 3◦ and the mapping function is VMF (Vienna Mapping Function) [38].

www.swisstopo.admin.ch
www.mpg.igp.ethz.ch/research/geomonitoring/cogear-gnss-monitoring.html
www.mpg.igp.ethz.ch/research/geomonitoring/cogear-gnss-monitoring.html
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Figure 3. Height distribution of the 12 GNSS stations located close to the study area shown with respect
to the latitude.

2.2.2. Low-Cost L1-Only X-Sense Stations

A network of low-cost L1-only GPS stations was installed within a region of the study as a part of
X-Sense project of nano-tera.ch (www.nano-tera.ch/projects/227.php), a program of Swiss National
Science Foundation [39]. There are 32 stations located in an area of approximately 7 km × 7 km in
the Randa Valley. Figure 2 shows the locations of the stations (marked in green) and Figure 4 depicts
the height distribution of the X-Sense stations. The stations are located at altitudes of 2380–3213 m
asml. The stations are equipped with single frequency (L1) receivers, thus, the ZTDs are calculated
in a relative sense referenced to the COGEAR station RAND, which is also located within the study
area. The station RAND has been operated only since July 2012; thus, the X-Sense stations can only
support the interpolation models for 11 acquisitions that took place in years 2012–2013. The ZTDs are
estimated without horizontal gradients with 1 h resolution using Bernese version 5.2 software [37].
The Niell mapping function [40] is used and the cut-off elevation angle is set to 10◦, due to the possible
obstructions of visibility.

Figure 4. The green stars present the height distribution of the 32 X-Sense stations shown with respect
to the latitude. The black stars indicate the 6 stations that are taken into ‘X-Sense 6’ data set.

www.nano-tera.ch/projects/227.php
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3. Methodology

To compare the tropospheric delays estimates from two different space-borne techniques,
namely GNSS and InSAR, we must reduce them to the same form and location. From InSAR,
we calculate the phase differences, which are converted to the difference slant tropospheric delays
(dSTD). From GNSS, we calculate the ZTDs at permanent stations. Then, we interpolate the GNSS
ZTDs to the locations of persistent scatterers and convert them to dSTDs. In this section, we describe
the methodology of these conversions in more detail.

3.1. Persistent Scatterer Interferometry

PSI [5,6,41,42] is a state-of-the-art method for deformation assessments with space-borne SAR data.
PSI attempts to identify long-term temporally coherent targets for which the deformation phase can be
separated from other sources of interferometric phase such as the atmosphere-induced phases and
phase contributions induced by initially unknown residual topographic height differences with respect
to a reference digital elevation model. In our work, we use an interferometric stack that was processed
using the Interferometric Point Target Analysis (IPTA) module of the GAMMA software [8,43,44].

An initial list of PS candidates is set up based on high temporal stability of the backscattering
and low spectral diversity. The interferometric phases across the stack are double-differenced relative
to a reference (master) acquisition and a reference point in the scene. The reference acquisition is on
20 September 2010, 17:46:45, which is roughly in the middle of all acquisition times. The reference
point is shown in Figures 5a and 6 as a white star.

Figure 5. (a) The height distribution of the 326,552 PS points. The white star indicates the reference
point and the red dots represent the GNSS stations situated within our area of interest (b) the average
intensity of the SAR image in radar coordinates.

The atmospheric phases separated from deformation and residual topography are isolated with a
spatio-temporal filtering of the phase values. We assume that the atmospheric phases are spatially
correlated to a certain extent while being uncorrelated from one pass to the next (given several
weeks of separation among the repeat passes). The atmospheric phases estimated for the PS are
low-pass filtered and spatially interpolated over the scene for example with a kriging interpolator [5,8].
The PS candidate list is iteratively refined using least-squares regression with quality control at
each iteration [41]. After several iterations, 326,552 PS have been identified within the chosen area.



Remote Sens. 2019, 11, 1789 7 of 21

The unwrapped atmospheric phases, ϕatm (relative to the reference acquisition and reference point),
estimated after the final refinement step are used to compute the dSTD as follows:

dSTD = ϕatm
λ

4π
. (1)

Figure 5a shows the heights of the identified PS points. The heights are spread between 1.1 km
and 4 km amsl. The average intensity of the SAR image in the radar coordinates (range and azimuth) is
shown in Figure 5b. In the geographical coordinates, the descending COSMO-SkyMed satellite passes
approximately from the north to the south and the radar looks to the west. Thus, the west side of the
valley is affected by layover in the SAR images and the PS points are mostly located on the east side.
By definition, a persistent scatterer is one single dominant scatterer per resolution cell. Thus, a layover
induced by the mountain ridge leads to a very small number of PS being detected in the areas affected
by layover.

3.2. Calculation of GNSS-Based Interpolation Models

The GNSS measurements are conducted for relatively few stations compared to the number of
identified PS points. However, by taking advantage of a diversified height distribution of the stations,
we can calculate the GNSS-based tropospheric estimates for all the PS. The chosen interpolation method
is the least-squares collocation technique using an in-house developed software COMEDIE [30,31].
In the collocation technique, each measurement is divided into the deterministic part, the correlated
stochastic part (signal) and the uncorrelated stochastic part (noise). With the estimated coefficients of
the deterministic part and the signal, the considered parameters such as ZTD can be interpolated at
any given position and time. The deterministic model of ZTD is given as:

ZTD(x, y, z, t) = [ZTD0 + a(x− x0) + b(y− y0) + c(t− t0)] · e
− z−z0

H0 , (2)

where x, y, z, t are the Swiss projected coordinates LV03, orthometric height and time of the investigated
point; x0, y0, z0, t0 are the coordinates, height and time of the reference point (average point from all
the observations in one time batch), ZTD0 is the ZTD at the reference position and time, H0 is the
scale height (the increase in altitude for which the value of ZTD decreases by a factor of e) and a, b, c
are the gradient parameters in x, y, and time, respectively.

The correlated stochastic part is assumed to be normally distributed with mean 0 and the
covariance matrix Css, which is chosen to be:

Css(i, j) =
σ2

signal

1 +
[( xi−xj

∆x0

)2
+

( yi−yj
∆y0

)2
+

( zi−zj
∆z0

)2
+

( ti−tj
∆t0

)2
]
· e−

zi+zj
2z0

, (3)

where σ2
signal is the a-priori variance of the signal, xi, yi, zi, ti are the projected Swiss coordinates,

orthometric height, and time of observation i, xj, yj, zj, tj are the coordinates, height and time of
observation j, z0 = 4 km is a parameter modifying the correlation lengths as a function of height,
∆x0 = 50 km, ∆y0 = 50 km, ∆z0 = 1 km, ∆t0 = 1.7 h are the empirically determined correlation lengths
of space and time. These collocation models have already been tested for the interpolation of GNSS
data in [34,35]. In [35], the cross-validation was performed for the stations in the similar area as in this
study. The average bias between the reference stations and the interpolation models was close to 0 mm
with 4 mm of standard deviation.

Figure 6 shows the absolute ZTDs calculated from GNSS data for all 326,552 PS for the master
acquisition. To calculate the slant tropospheric delays (STD), we map the ZTDs with a simple
mapping function:

STD =
1

cosθ
(4)
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where θ is the incidence (zenith) angle of the COSMO-SkyMed satellite. For this simple mapping
function approach, it is recommended to use the exact incidence angle for each pixel of an InSAR
image [15], not an averaged one nor the one in the middle of the scene. For our study area, the angles
vary from 24.5◦ in the near-range to 25.4◦ in the far-range.

Figure 6. The example of ZTDs calculated for all 326,552 PS for master acquisition (20 September 2010,
T:17:46:45) superimposed with GDEM. The white star indicates the reference point.

From the absolute STDs, we calculate the dSTD(X, t) for each point X = (x, y, z) and time t as:

dSTD(X, t) = STD(X, t)− STD(X, tm)− (STD(Xre f , t)− STD(Xre f , tm)) (5)

where tm is the time of the master acquisition and Xre f is the radar reference point on ground.

4. Results and Discussion

We compute the GNSS and InSAR-based relative tropospheric delay estimates for all the
32 acquisitions. Due to the relative nature of the delays, we cannot compare them for the master
acquisition. Moreover, we removed three of the acquisitions from the comparisons due to unwrapping
errors in PSI processing. For the 28 remaining dates, we assess the agreement between the two
techniques using 4 metrics with the following assumptions of the level of the agreement:

• R [unitless]: Pearson’s correlation coefficient, which measures the values of linear correlation
between two variables; it takes values from −1 to 1, with 1 being a full correlation, |R| > 0.7
means strong correlation, 0.5 < |R| < 0.7 means moderate, 0.3 < |R| < 0.5 weak and |R| < 0.3 a
very weak or no correlation [45].

• Index of Agreement (IOA) [unitless]: developed by [46] is a standard measure of a model
prediction error; it takes values between 0 and 1; where 1 is a perfect match, IOA > 0.6 means
good agreement, 0.4 < IOA < 0.6 moderate, 0.3 < IOA < 0.4 poor and IOA < 0.3 very poor
agreement. The IOA can detect additive and proportional differences between the two models;
however, it is very sensitive to extreme values [47].



Remote Sens. 2019, 11, 1789 9 of 21

• bias [mm]: the difference between dSTDInSAR and dSTDGNSS averaged over the study area;
it describes the model tendency of an overestimation (bias > 0) or underestimation (bias < 0);
|bias| < 2 mm means good agreement, 2 mm< |bias| < 4 mm moderate, 4 mm< |bias| < 10 mm
poor and |bias| > 10 mm very poor agreement.

• standard deviation (SD) [mm] of the differences dSTDInSAR − dSTDGNSS is a measure of a
variation of data; SD < 3.5 mm means good agreement, 3.5 mm< SD < 5 mm moderate,
5 mm< SD < 6 mm poor and SD > 6 mm very poor agreement.

The levels of agreement for biases and SDs are decided arbitrarily based on the experience of the
authors to make the interpretation of the results easier.

4.1. Comparisons of InSAR and GNSS Tropospheric Estimates

Firstly, we compare the InSAR delays with the GNSS-based estimates computed from the geodetic
network of Switzerland (AGNES and COGEAR). Table 1 presents an overview of the statistics for all
28 acquisitions, sorted by the level of the agreement.

Table 1. The statistics for all acquisitions sorted by the agreement between GNSS and InSAR starting
with the best agreement. The colors denote the following: green—good agreement, cyan—moderate
agreement, orange—poor agreement and red—very poor agreement. The last column presents the SD of
the GNSS estimates only. The colors denote: pink—high variability (>5 mm), navy blue—low variability
(<3 mm), black—average variability (between 3 and 5 mm).

Date R [-] IOA [-] Bias [mm] SD [mm] SD GNSS [mm]

2011-09-23 0.82 0.63 −1.2 3.2 5.5
2013-07-26 0.80 0.66 −1.0 4.6 7.7
2013-07-10 0.73 0.63 −0.3 4.9 6.5
2011-10-13 0.84 0.6 −3.0 3.2 5.4
2010-08-19 0.85 0.61 −3.1 3.8 7.1
2012-09-09 0.81 0.58 −2.7 2.8 4.7
2013-10-18 0.80 0.58 0.0 4.0 3.2
2013-08-11 0.69 0.52 −2.7 4.6 5.3
2011-09-27 0.86 0.47 −5.9 3.3 5.4
2013-08-27 0.88 0.40 −7.7 3.2 5.1
2010-08-03 0.43 0.42 −1.9 3.5 3.4
2012-08-08 0.42 0.43 2.0 4.8 4.8
2013-09-28 0.44 0.44 3.2 4.2 4.4
2013-08-31 0.49 0.42 −3.8 3.5 3.0
2011-06-03 0.81 0.32 −8.2 3.3 4.8
2011-07-21 0.57 0.39 −4.3 3.2 3.1
2012-07-23 0.49 0.48 −3.9 5.8 4.3
2010-09-04 0.29 0.38 0.7 4.0 2.9
2012-06-21 0.81 0.32 −11.8 4.4 4.2
2011-09-11 0.88 0.35 −11.7 3.8 6.8
2010-10-06 0.90 0.25 −11.6 3.6 1.8
2012-06-05 0.43 0.38 −4.0 3.2 1.7
2010-10-22 0.67 0.24 −10.9 3.3 3.8
2012-07-07 0.58 0.24 −11.2 3.8 3.0
2013-09-12 0.44 0.26 −6.3 3.1 2.5
2011-07-05 0.07 0.16 −12.7 3.4 1.4
2008-09-30 0.51 0.24 −16.7 5.9 2.6
2008-10-16 0.50 0.26 −11.8 4.7 3.5

average 0.64 0.42 −5.5 3.9

Table 1 presents on average 7 acquisitions with a good agreement, 8 with moderate, 8 with poor,
and 5 with very poor agreement. In Section 4.3 we discuss the possible reasons for the good/poor
agreement for particular acquisitions. However, firstly, we take a closer look at some examples of both
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situations. Figure 7 shows an example of a good agreement between the two techniques for one day
23 September 2011.

Figure 7. Comparison between InSAR and GNSS estimates for a day with a good agreement
(23 September 2011). The plots show (a) InSAR-based dSTDs for all PS points; (b) GNSS-based
dSTDs for all PS points; (c) the differences between (a,b); (d) the correlation between techniques; (e) the
histograms of dSTD values for both techniques and (f) the histogram of differences dSTDInSAR −
dSTDGNSS. The white star indicates the reference point and red dots the GNSS stations within the
research area.

Most of the dates of good agreement between GNSS and InSAR look similar to Figure 7.
For such days, the variability of GNSS estimates is high, almost as high as for InSAR. However,
InSAR measurements have much higher spatial resolution and sometimes the estimates from InSAR
are more detailed than for GNSS. This behavior is visible in the correlation plots as ‘tails’ that are the
variability of the delay captured by InSAR but not by GNSS.

Figure 8 depicts the worst agreement between InSAR and GNSS from all dates (5 July 2011).
The correlation coefficient for this date is equal to only 0.07. As shown in Figure 8b, the estimates
based on GNSS are almost constant. This is the most common feature for the days with poor
agreement—the GNSS estimates are very stable, almost constant, while the InSAR estimates show
variability. An interesting example of poor agreement is day 4 September 2010, presented in Figure 9.
Visually, the agreement could be evaluated as good, especially looking only at the histograms, but in
the northern part of the area, there is a negative correlation between InSAR and GNSS. This could
be only explained by some very local tropospheric conditions that cannot be captured by the sparse
GNSS data.

Considering the spatial location of the PS points, the highest agreement is close to the only GNSS
station within the area, ZERM. The agreement between the techniques for the PS points located around
this station is usually good, even for acquisitions that are overall classified as poor. There is another
GNSS station, RAND, which is located close to the PS points, but on the other side of the valley and no
PS were found at the exact location of the station due to layover. Nonetheless, this station influences the
GNSS-based estimates. RAND is located at around 2.5 km amsl and the closest (in a planar sense) PS
points are in the valley at around 1.5–2 km amsl. Thus, the GNSS estimates for these points, influenced
by RAND, are often underestimated, which manifests as positive differences between InSAR and
GNSS for that area. This behavior is also visible for other dates, which are not shown here.
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Figure 8. Comparison between InSAR and GNSS for a day with the worst agreement (5 July 2011).
The plots show (a) InSAR-based dSTDs for all PS points; (b) GNSS-based dSTDs for all PS points;
(c) the differences between (a,b); (d) the correlation between techniques; (e) the histograms of dSTD
values for both techniques and (f) the histogram of differences dSTDInSAR − dSTDGNSS. The white
star indicates the reference point and red dots the GNSS stations within the research area.

Figure 9. Comparison between InSAR and GNSS for a day with a poor agreement (4 September 2010).
The plots show (a) InSAR-based dSTDs for all PS points; (b) GNSS-based dSTDs for all PS points;
(c) the differences between (a,b); (d) the correlation between techniques; (e) the histograms of dSTD
values for both techniques and (f) the histogram of differences dSTDInSAR− dSTDGNSS. The white star
indicates the reference point and red dots the GNSS stations within the research area. The rectangles in
(a–c) denote the area with the negative correlation between InSAR and GNSS.
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In general, the GNSS estimates are highly dependent on the topography. The PS heights, as shown
in Figure 5, reach up to 4 km amsl, while the two stations located in the closest vicinity, RAND and
ZERM are located at 2.5 and 2 km amsl respectively. Thus, there is a possibility of overestimating the
delays at higher altitudes (located in the northeast side of the area). On the other hand, in that area,
the slope is very steep, and the height differences are very rapid. This is also a challenge for the InSAR
technique—estimating the points that are very close horizontally but with large height differences.
Although it is evidently a challenging area to estimate, there is no clear pattern of the InSAR-GNSS
differences. In Figure 7, the GNSS is underestimated compared to InSAR, in Figure 8 overestimated
and in Figure 10 there is no relation between the PS heights and the agreement. There is one batch
of PS points where the two techniques differ significantly for many of the acquisitions. It is in the
south-west of the area at altitudes 2.5–3 km amsl, which is much higher than the altitudes of the other
PS points that are horizontally close. There are usually large differences between the techniques for
this area, even for days of overall good agreement. The probable reason is that the closest points in
a planar way are actually located at much higher altitudes and the InSAR estimates may be wrong
due to erroneous phase wrapping. Such situations occur sometimes for PSI processing in the high
mountains and we see a potential in using GNSS-based estimates for detecting them.

Figure 10. Comparison between InSAR and GNSS-based estimates for 10 July 2013. The plots show
(a) InSAR-based dSTDs for all PS points; (b) GNSS-based dSTDs for all PS points; (c) the differences
between (a,b); (d) the combined GNSS/X-Sense estimates; (e) the differences between (a,d); (f) the
correlation between InSAR and GNSS or GNSS/X-Sense estimates; (g) the histograms of the values
and (h) the histogram of differences between InSAR and the two GNSS-based models. The white star
indicates the reference point, red dots the GNSS stations within the closest research area and black dots
the X-Sense stations.
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4.2. Comparisons of InSAR and GNSS/X-Sense Tropospheric Estimates

Furthermore, we test if adding the low-cost L1-only stations can improve the agreement between
the techniques. Figure 10 shows an example of the tropospheric delay estimates based on three data
sources: ‘InSAR’, ‘GNSS only’ and ‘GNSS/X-Sense’ for one date 10 July 2013.

The dSTD estimates based on the ‘GNSS/X-Sense’ data set show even less variability than
‘GNSS only’. A possible reason may be that we take too many stations over too small area that are
located at altitudes within less than 1 km. Thus, the vertical distribution of the stations may not be
sufficient. To test this hypothesis, we take only six X-Sense stations out of 32 into the collocation
procedure. The selected stations are nearly uniformly distributed as shown in Figure 4. Using the
‘GNSS/X-Sense 6’ data set, we achieve a slight improvement compared to ‘GNSS/X-Sense’, although,
for most of the days, it is still worse than ‘GNSS only’ set. Correlation coefficients, IOAs, biases and
SDs for all three data sets are shown in Figure 11. The X-Sense data are only available from July 2012;
thus, the statistics are only calculated for the corresponding 11 acquisitions of COSMO-SkyMed.

Figure 11. (a) correlation coefficients (b) IOA (c) bias and (d) SDs of the differences between InSAR
and three data sets: ‘GNSS only’ (red dots), ‘GNSS/X-Sense’ (green stars), ‘GNSS/X-Sense 6’ (black
stars) averaged over the entire study area for 11 acquisitions that corresponds to the availability of the
X-Sense data.

Unfortunately, adding the X-Sense data does not improve the agreement between InSAR and
GNSS for the area of this study. Thus, we test if it can improve the estimates only for the area covering
the X-Sense stations. Figure 12 shows the estimates analogical to depicted in Figure 10, for the same
date 10 July 2013, but for the limited area and Figure 13 shows the statistics calculated only for the
limited area.

For the limited area, the estimates from ‘GNSS/X-Sense’ data set are in a higher agreement with
InSAR than for the whole area, but on average the agreement is still worse than for the ‘GNSS only’
data set. However, for some dates, the IOAs for the combined estimates are higher and the biases
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are smaller. A positive impact of using X-Sense stations is that the SDs of the differences between
techniques for almost all dates are smaller for ‘GNSS/X-Sense’ than ‘GNSS only’.

Figure 12. Comparison between InSAR and GNSS-based estimates for 10 July 2013 for a limited area.
The plots show (a) InSAR-based dSTDs for all PS points; (b) GNSS-based dSTDs for all PS points;
(c) the differences between (a,b); (d) the combined GNSS/X-Sense estimates; (e) the differences between
(a,d); (f) the correlation between InSAR and GNSS or GNSS/X-Sense estimates; (g) the histograms
of the values and (h) the histogram of differences between InSAR and the two GNSS-based models.
The white star indicates the reference point, red dots the GNSS stations within the closest research area
and black dots the X-Sense stations.

The ‘GNSS/X-Sense 6’ data set is almost always slightly better or similar to ‘GNSS/X-Sense’ set,
which includes all of the X-Sense stations. The low-cost, L-1 only X-Sense stations have of course
worse quality than GNSS geodetic stations. The comparisons show that unfortunately, taking such
low-cost stations into combinations with geodetic stations can deteriorate the results, especially in the
areas where there are no stations and we have to extrapolate (as shown in Figures 10 and 11). For the
limited area that included the X-Sense stations, the combination model is still worse than ‘GNSS only’,
which can be attributed to the quality of the X-Sense stations.

It is worth further noting that the agreement of the ‘GNSS only’ subset with the InSAR estimates
is worse for the limited area than it is for the entire area. The closest GNSS station, RAND is located
on the other side of the valley where there are no PS points, due to a layover. This station is located
also at higher altitude than the closest PS points in the valley. This affects the GNSS-based model
and can explain why the general agreement between GNSS and InSAR deteriorates in the limited
area. However, for the acquisition depicted in Figure 12, the differences are not height dependent.
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There are some very local changes in dSTDs captured by InSAR but not by either ‘GNSS only’ nor
‘GNSS/X-Sense’ estimates. For this scene, the agreement between the techniques is the worst for the
area of X-Sense stations. Thus, the agreement of GNSS is worse for the limited area compared to the
entire area. Moreover, there are a few acquisitions where the correlation for the limited area is actually
negative, which deteriorates the agreement for the entire scene.

Figure 13. (a) correlation coefficients (b) IOA (c) bias and (d) SDs of the differences between InSAR and
three data sets: ‘GNSS only’ (red dots), ‘GNSS/X-Sense’ (green stars), ‘GNSS/X-Sense 6’ (black stars)
averaged over the limited 7 km × 7 km area for 11 acquisitions that corresponds to the availability of
the X-Sense data.

4.3. Discussion

The agreement between the InSAR and GNSS-based tropospheric delays differs spatially within
one acquisition and temporally between different acquisitions. The reasons of the spatial differences
are discussed in Sections 4.1 and 4.2. Here, we investigate the reasons of the differences between the
techniques for different acquisitions. Firstly, we test if the agreement is correlated with meteorological
conditions. We compare the GNSS estimates with NWM ERA-Interim provided by European Centre
for Medium-Range Weather Forecasts (ECMWF (https://www.ecmwf.int/)). This model is calculated
with a very sparse resolution of approximately 80 km. To compare the weather situation with the
delays, we interpolate the meteorological parameters of ERA-Interim to the locations of chosen
uniformly distributed PS points (approx. 5000 points) using the GOP-TropDB–TropModel online
service (http://www.pecny.cz/GOP-TropDB/form-online/) [48,49]. We compare the values of the
water vapor partial pressure (WV), temperature, and air pressure with the agreements between InSAR
and GNSS. For temperature and air pressure there is no visible relation between the parameters and
the agreement. However, there is a weak correlation between WV and the agreement. Figure 14 shows
the average values and SDs of water vapor averaged over the entire area. The colors for each day
indicate the agreement for that day consistent with Table 1.

https://www.ecmwf.int/
http://www.pecny.cz/GOP-TropDB/form-online/)
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Figure 14. (a) the average values and (b) SDs of water vapor for each acquisition. The colors denote the
level of agreement between InSAR and GNSS for these days. The navy blue lines indicate the values of
WV for master acquisition

For many days with poor agreement, the SDs of WV values are lower than for days with good
agreement. This may indicate that a better agreement can be achieved for days with more variability of
the troposphere which is mostly influenced by the variability of WV. Better agreement is also achieved
for days for which WV SDs are closer to the WV SDs of the master acquisition. For the average WV
values, there is no such correspondence.

We test further the influence of the tropospheric conditions on the agreement between InSAR and
GNSS. The standard deviation of dSTD GNSS is the simplest measure of the tropospheric variability
in space. Last column of Table 1 presents these SDs. There is a visible relation between the agreement
and the GNSS SD, i.e., for the days with a good agreement the GNSS SD is relatively high (>5 mm)
compared to the days with poor agreement where the SD is relatively low (<3 mm). This may indicate
that for our case study, the good agreement between GNSS and InSAR is obtained for the days of more
spatially varying troposphere. The reason for that may be that master acquisition has been chosen to
be of calm tropospheric conditions. The dSTDs are relative to the master acquisition and thus, for days
of calm troposphere, when the GNSS ZTDs are too similar to the master acquisition, the GNSS dSTDs
are too constant.

Another characteristic that can differentiate between the particular days is the number of GNSS
stations in the closest vicinity of the study area. There are less stations for the earlier dates (from five to
eight) and more stations (from 9 to 12) starting from 2012, when the majority of the COGEAR stations
was installed. Figure 15 shows the number of stations for each day, where the colors indicate the level
of agreement.

As shown in Figure 15, for the earlier dates, there are more times with poor agreement than for
the later, but it is difficult to see a clear relation between the number of stations and the level of the
agreement. For example, there are three days with only 5 stations available, and for two of them the
agreement is moderate, while only for one it is poor. Also, for the days with the maximum number of
stations, there are 5 days with good or moderate agreement, but two days with poor. On the other
hand, the average metrics calculated from years 2012–2013, where there are more stations are similar
or better than for all the dates. For R and SD there is almost no difference, but IOA from the two-year
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period equals to 0.49 (compared to 0.42 from all acquisitions) and the largest improvement is with bias,
which equals to −2.1 mm averaged from two last years and −5.5 mm for all the acquisitions.

Figure 15. Number of stations for each acquisition. The colors denote levels of agreement between
GNSS and InSAR.

5. Conclusions

We compared the dSTD estimates obtained from two geodetic space-borne techniques, InSAR and
GNSS, for 32 SAR acquisitions spanned over a period of five years. Three of the acquisitions
were removed from the analysis due to phase unwrapping errors in the interferometric processing.
We divided the remaining 28 pairs into days with good, moderate, poor and very poor agreements
based on the correlation coefficients, IOA, biases, and SDs between the data sets. The good or moderate
agreement was achieved for more than a half of the acquisitions. We also incorporated the information
from low-cost GPS-only stations located in Randa Valley for 11 acquisitions where the data were
available. Unfortunately, this inclusion did not improve the overall agreement between the two
techniques. The only improved measure was the SD of the differences for a limited area, where the
X-Sense stations are located.

The differences in the agreement between the two techniques varied spatially within one
interferogram but also temporally between different acquisitions. Spatially, the best agreement was
obtained for PS points located close to GNSS station ZERM. There is another GNSS station (RAND),
close to the study area, but on the other side of the Randa Valley. The GNSS estimates from RAND had
rather negative impact on the agreement, because the station is located much higher than horizontally
close PS points. Similar impact can be seen for some of the PS points that are located at much higher
altitudes than the points nearby. For these points, the agreement between the techniques was always
the worst.

Temporally, the agreement for different acquisitions also varied. We investigated the possible
reasons of the poor agreement between techniques, considering the meteorological conditions in the
area, the tropospheric conditions and the number of available stations. There is a weak correlation
between the agreement and the variability of water vapor—for days of higher variability, the agreement
is better. The variability of water vapor is directly linked to the variability of troposphere, which can
be expressed for example in standard deviations of the GNSS dSTDs. For days with higher SDs
of the GNSS estimates, the agreement between techniques was higher. The agreement was also
moderately dependent on the number of stations. For the years 2012–2013, where there are mores
stations available in the vicinity of the area, there were more instants of a good agreement and some
statistics, namely biases and IOAs were improved.

As expected, there occurred considerable differences between the GNSS and the InSAR estimates
in the challenging alpine conditions, due to different spatio-temporal characteristics of both techniques.
The geometry of the satellites is different. The SAR signal propagates only in a narrow swath from one
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direction, while the GNSS estimates are obtained from a wide range of angles. This is one of the limiting
factors, why the two approaches lead to sometimes significantly different delays. Moreover, it may be
impossible to capture the spatial variability of the troposphere with only a few GNSS stations in as
much detail as with PSI at X-band, which has a much higher sensitivity to the tropospheric delay than
the L-band GNSS on top of the much higher spatial resolution. On the other hand, the InSAR estimates
will never reach the temporal resolution of GNSS stations, although, the planned new geosynchronous
SAR missions are designed to provide a higher temporal resolution. Nonetheless, this study showed
that it is possible in some cases to obtain a good level of agreement between techniques, which may
open the possibility of combining these techniques into one tropospheric product.
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Abbreviations

The following abbreviations are used in this manuscript:

AGNES Automated GNSS Network for Switzerland
COGEAR Coupled Seismogenic Geohazards in Alpine Regions
COMEDIE Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Path delays
DEM Digital Elevation Model
dSTD difference Slant Tropospheric Delay
ECMWF European Centre for Medium-Range Weather Forecasts
GPS Global Positioning System
GNSS Global Navigation Satellite System
InSAR SAR Interferometry
IOA Index of Agreement
NWM Numerical Weather Model
PS Persistent Scatterer
PSI Persistent Scatterer Interferometry
SAR Synthetic Aperture Radar
SD Standard Deviation
STD Slant Tropospheric Delay
WV Water Vapor
ZTD Zenith Tropospheric Delay
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