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ABSTRACT

A geostatistical analysis of the atmospheric phase screen
(APS) affecting Ku-Band terrestrial radar interferometric
(TRI) observations of a fast-flowing alpine glacier is made
assuming a separable spatio-temporal covariance structure.
Such a structure facilitates the mitigation of APS: the at-
mospheric phase affecting individual interferograms can be
extrapolated form a set of persistent scatterers (PS) using
regression-Kriging. After removing this estimate the residual
APS is only correlated in time; its effect on surface dis-
placement estimation is mitigated with a generalized least
squares (GLS) inversion employing an estimate of the tem-
poral covariance of the APS. The applicability of a separable
covariance structure and the performance of the APS correc-
tion method are assessed on a TRI timeseries of Bisgletscher,
a glacier in the southwestern Swiss Alps.

1. INTRODUCTION

Terrestrial Radar Interferometry (TRI) can be used to monitor
displacements in natural terrain[1], [2] at day and night, re-
gardless of weather. Typical applications are the observation
of instable slopes[3], rock glaciers and glaciers[4]-[6]. Ter-
restrial radar interferometers are very suitable for those appli-
cations requiring zero-baseline differential interferometry as
they provide great flexibility in the acquisition geometry and
timing.

Differential interferometry is a coherent method: the phase of
a target in a radar acquisition is proportional to its distance to
the radar; when acquisitions at different times are combined
in an interferogram, the phase difference is is proportional to
the displacement of the target. However, the phase is also af-
fected by changes in the refraction index of the propagation
medium, which are usually due to variations in the spatial
distribution of atmospheric water vapor content. This signal
is superimposed to the displacement phase and is of compara-
ble magnitude, reducing the accuracy of estimated displace-
ments. However APS and displacement have different spatio-
temporal behaviors, permitting statistical inferences regard-
ing their relative contributions, particularly if multiple inter-
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ferograms are used for the estimation[7].

2. METHODS

2.1. Signal Model

The problem of estimating terrain displacements given a set of
M interferograms each consisting of P pixels can be written
as[8]:
47

z = TTV + €atm + €decorr (1)
where z is a P M vector of unwrapped, referenced interfero-
metric phases obtained from a vector y of P N SLC phases
ordered by time of acquisition. The two vectors are related

through the incidence matrix A[8]:
z = Ay. 2)

where A indicates that the incidence matrix is a block diago-
nal matrix built of P identical M x N blocks. v is a vector of
P S,S < M velocities at S times and T is a block-diagonal
matrix with blocks of size M x S. Each block in T, cor-
responding to a pixel in the interferogram stack consists of
the same matrix: its ¢-th column is the vector of temporal
baselines for the M /S interferograms in z for which a con-
stant displacement velocity v; is assumed for that pixel. As an
example, assuming a single velocity v for each pixel for the
entire stack duration (S = M) corresponds to interferogram
stacking[9].

Finally, €,¢,, is the atmospheric phase (APS) and €gecorr r€P-
resents other sources of noise such as thermal noise and tem-
poral decorrelation. Both these contributions are assumed to
be zero-mean Gaussian random vectors with covariance ma-
trix 3 = g + Bdecorr

The best linear unbiased (BLUE) estimate of the velocity vec-
tor v from the interferogram stack z is the generalized least
squares solution:

v=(T72'T) " T7S 'z, 3)

However the covariance matrix X is usually not known; even
if it were its large size would make the solution of (3) imprac-
tical.
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2.2. Covariance Model and Inversion Strategy

Instead of directly computing (1), a two-step inversion
scheme can be employed.

To do so, €4¢m the APS affecting each SLC acquisition in y
is decomposed in two terms: a stratified APS contribution
€y,atm,strat and a turbulent APS €y 4¢m turs. The former
is used to describe atmospheric layering[4], [10]; it is de-
scribed with a multiple regression model using functions of
the pixel’s locations. The turbulent APS is assumed to be a
zero mean, second order spatially and temporally stationary
Gaussian random process with separable spatio-temporal co-
variance structure[11]: its covariance can be written as the
Kronecker product of spatial X, s and temporal covari-
ance matrices X4y, ;. The covariance of the differential APS
observed in the interferogram vector is then [7]:

Eatm = A (Eatm,s & 2atnz,t) AT

“4
= Eatrn,s & (Azatm,tAT) )

In spaceborne InSAR X, ; = I is usually assume: suc-
cessive passes are separated by several days or longer, which
ensures uncorrelated atmospheric turbulence. This assump-
tion does not necessarily apply to TRI observations, where
the repeat time is much shorter. Possible correlations in time
are allowed through a non-diagonal 3y, ;.

Spatio-temporal separability implies that spatial and tempo-
ral covariance structures are independent of each other and
are respectively functions of spatial and temporal separations:
the spatial covariance structure cannot change as a function of
time[7]. The only way time can affect the spatial covariance
is by changing its overall magnitude as a function of the tem-
poral baseline. Thus the APS in two interferograms with dif-
ferent spatial baselines will have the same spatial correlation
structure; only their phase variance can differ.

The decorrelation process X gecorr 1S assumed to be spatially
uncorrelated and can estimated using the procedure described
in [7].

The above model is used to estimate the solution of equa-
tion (1) in the following manner:

o Identify a set of persistent scatterers (PS) where v = 0.
The selection of the PS usually proves to be unprob-
lematic in the case of alpine glaciers: The locations
affected by displacement are normally known a priori
and can be easily masked out; other deformation pro-
cesses outside of that region happen at widely different
timescales. With these PS a second interferogram stack
is computed which is virtually free of deformation and
decorrelation contributions.

e Estimate Xy, s and X4y, ¢ using variogram analy-
sis on the PS stack. 3, s is obtained by averag-
ing spatial variograms computed on individual interfer-
ograms, assuming spatio-temporal separability. Simi-
larly, 344y, is computed as the square average of un-

wrapped interferometric phase differences binned by
temporal baseline.

e Extrapolate the phases at the PS to the locations of
the interferogram z using regression-Kriging (RK)[12]
with a model of APS stratification and the estimated
spatial variogram. This gives a 2D prediction of the
spatially correlated APS which can be removed from
the interferogram. The residual interferogram vector
Zres 1S then approximatively spatially uncorrelated.

o Compute the Generalized Least Squares (GLS) esti-
mate (3) of v using z,. instead of z. The GLS inverse
can be computed pixel by pixel: the APS correction
using RK makes z,.; approximately uncorrelated in
space.

3. DATA

The methods described above are tested with a dataset ac-
quired using KAPRI (Ku-Band Advanced Polarimetric Radar
Interferometer)[13], a polarimetric extension of the GPRI[14]
real aperture TRI operating at 17.2 GHz.

The data was acquired during the summer months of 2015 in
the Mattertal, Southwestern Swiss Alps, canton of Valais dur-
ing a campaign to monitor Bisgletscher, a steep, fast flowing
—up to 2 meters/day in its fastest parts— glacier near the vil-
lage of Randa.

In the course of the campaign a timeseries of SLC images
spaced 2:30 minutes apart was acquired; from which 10 dates
are chosen randomly as reference dates. The random sam-
pling ensures that SLCs representing different atmospheric
conditions are analyzed.

Variogram analysis is performed on the set of all interfero-
grams with a temporal baseline less than one hour from the
references; while GLS inversion to derive velocity maps is ap-
plied on all the interferometric pairs with a maximum tempo-
ral baseline of 5 minutes. The threshold is chosen to minimize
phase wraps and temporal decorrelationn. A model assuming
a constant velocity over the course of 30 minutes (S = 15)
was chosen for the GLS inversion.

4. RESULTS

Figure 1 is used to test the separability of the APS covariance
by computing experimental variograms using interferograms
from different dates and increasing temporal baselines; these
are encoded in the point’s color in the plot; the mean var-
iogram is shown as a dashed line while the variance in the
spatial semivariance across all interferograms is displayed as
a gray ribbon. The blue line indicates a fitted exponential var-
iogram model that is employed to extrapolate the APS ob-
served at the PS using regression-Kriging (RK), which pre-
dicts the APS considering the spatial statistics and the APS
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Fig. 1. Experimental spatial variogram; each dot shows the
semivariance for an interferogram at a given spatial separa-
tion; the temporal lag is given by the dot’s color; the dashed
black line shows the variogram obtained by averaging the
semivariance over all interferograms while the gray surface
displays the standard deviation. The blue line is a fitted expo-
nential variogram model.

stratification model simultaneously. The performance of RK
is evaluated by cross-validation: the RK prediction of the APS
is computed for each interferogram to derive the residual in-
terferogram z,..;. A second set of PS located on stable areas
in proximity of the glacier, where v = 0 is expected, is used
to extract the residual phases after RK, which are converted
into line of sight velocities; they are shown in the form of
residual velocity histograms in Figure 2.

Finally, an example displacement map obtained using RK cor-
rection and GLS inversion is displayed in Figure 2, overlaid
to a topographic map.

S. DISCUSSION

Separability seems a reasonable assumption considering the
moderate difference between variograms computed from
individual interferograms, as shown by the gray ribbon of
Figure 1. Assuming the covariance to be separable, the spa-
tial variograms must be the same up to a scaling factor and
offset for all temporal baselines.

However, variations in variogram’s shape are still observed
in the plot; they may relate to non-stationarity in the atmo-
spheric turbulence caused by varying weather conditions and

Distribution of velocity on stable areas, binwidth: 0.025 m/day
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Fig. 2. Cross-validation of APS correction and inversion per-
formance: the estimated velocities on a set of stable locations,
where no displacements are expected (v = 0) are extracted
and their distribution plotted as an histogram. The column
named stacked: no on the right shows the solutions obtained
by applying APS correction methods (kriged: RK, Im: Strati-
fied model only, unprocessed: no correction) to the interfero-
grams and converting their phases into velocities; the column
APS+Coh on the left display the distribution of estimates ob-
tained with the same APS correction methods followed by
GLS inversion.

amount of solar radiation at different dates and times of the
day.

A significant reduction in phase variance compared to the
unprocessed interferograms (label method: unprocessed) is
observed when the RK APS predictions are subtracted (label
method: kriged). Removing only the stratified APS predicted
by the multiple regression model (label method: lm) does not
substantially reduce phase variance. This observation was
tested quantitatively by computing the statistics of R? over
all runs of the multiple regression APS model, giving an aver-
age R? of 0.2, suggesting that most of the phase variance is to
be attributed to turbulence of the APS and not to atmospheric
stratification.

When regression-Kriging is combined with GLS estima-
tion of the velocities an additional decrease in variance
is achieved, as shown in the left column named stacked:
APS+Coh of Figure 2.

The estimated velocities are in agreement with the current
knowledge on the Bisgletscher, where time-lapse camera ob-

6506



2015/07/31 10:10:21 10:15:21
2 B )

Lt
~ [TongJRock Below
R .

0.000 0.222 0.444 0.667 0.889 1.111 1.333 1.556 1.778 2.000
LOS Displacement [m/day]

Fig. 3. Example displacement map obtained using spatial
APS correction with RK plus GLS inversion weighted by
the temporal covariance of the APS. The outline of the Bis-
gletscher is shown in black. Areas of low coherence or lo-
cated in radar shadows are masked. The times correspond to
the first and last acquisition used in the stack.

servations gave estimated flow velocities of up to 2 m/day in
the fastest parts.
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