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Abstract—In this contribution, tomographic imagery
obtained from estimating the 3-D localization and the
polarimetric signature of backscattering sources within a
forest environment from fully-polarimetric multibaseline
SAR data at L- and P-bands are presented. Both, polar-
ization diversity and spatial diversity were exploited jointly
within the tomographic focusing to estimate the targets’
localization and polarimetric signature. We thereby ex-
tend our recently proposed time-domain back-projection
(TDBP)-based tomographic focusing approach. The tomo-
graphic slices obtained from polarimetric spectral estima-
tion using MLBF, Capon, and MUSIC are opposed to the
results previously obtained by tomographic focusing of the
individual polarization channels. The results are briefly
discussed with respect to potential advancements towards
more reliable estimation of forest parameters from SAR
tomography data.

Index Terms—SAR tomography, beamforming, Capon,
MUSIC, forestry

I. INTRODUCTION

Various SAR tomography concepts to retrieve struc-

tural information of forest volumes were proposed and

demonstrated in a number of experiments during the

last couple of years [1]–[13]. In this paper, we deter-

mine the localization and the polarimetric signature of

backscattering sources within a forest environment by

jointly using the different polarization channels in the to-

mographic focusing process thereby extending our time-

domain back-projection (TDBP)-based tomographic fo-

cusing approaches described in [12], where the individ-

ual polarization channels were estimated individually.

The respective results are compared and discussed.

II. DATA

The experimental data consists of the two SAR tomog-

raphy data sets that were also used in our previous work

on tomography-based characterization of a forest [5],

[6], [12], [13]. This ensures a good comparability of the

TABLE I
E-SAR SYSTEM SPECIFICATIONS AND NOMINAL PARAMETERS OF

THE TOMOGRAPHIC ACQUISITION PATTERNS FOR BOTH

MULTIBASELINE DATA SETS AT P-BAND AND L-BAND.

P-band L-band
Carrier frequency 350 MHz 1.3 GHz

Chirp bandwidth 70 MHz 94 MHz

Sampling rate 100 MHz 100 MHz

PRF 500 Hz 400 Hz

Ground speed 90 m/s 90 m/s

No. of data tracks 11+1 16+1

Nominal track spacing dn 57 m 14 m

Horizontal baselines 40 m 10 m

Vertical baselines 40 m 10 m

Synthetic aperture in

normal direction L
570 m 210 m

Nominal resolution in

normal direction δn
3 m 2 m

Approx. unambiguous height H 30 m 30 m

performance of the various single- and fully-polarimetric

tomographic processing methods. Both tomographic data

sets, at L- and P-bands, are fully polarimetric. The data

was acquired by the German Aerospace Center’s E-SAR

sensor over a partially forested area in Switzerland. A

detailed description of the experimental setup is found

in [13]. The most important parameters regarding sensor

specifications and tomographic acquisition geometry are

reproduced in Table I.

III. METHODS

The time-domain back-projection (TDBP-)based sin-

gle channel focusing approaches used here for compar-
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(a) (b)

Fig. 1. Vertical slices through a 3-D volume of a forested area obtained from multibaseline (a) L-Band and (b) P-band data set using all
(16, and 11) repeat-pass tracks. Red (HH), green (HV), blue (VV). Each channel has been focused and scaled individually. Greyed areas
indicate ambiguous target regions. The tomographic slices run in south-northern direction (at easting coordinate E = 703670 m) and are
overlaid by the DEM (solid red line) and the DSM (solid green line) from ALS. Top: MLBF, middle: RCB, bottom: MUSIC. The above
tomographic slices were originally published in [12] and are reproduced here for comparison.

ison are described in [12] and an even more extended

description is found in [14]. In the following, only the

main steps of the joint polarimetric-multibaseline SAR

focusing are sketched for (1) polarimetric multilook

beamforming, (2) polarimetric multiple signal classifica-

tion (MUSIC), and (3) polarimetric Capon beamforming.

A more detailed treatment of these joint polarimetric-

multibaseline spectral estimation approaches is found

in e.g. [15], [16], and such approaches were recently

applied in the context of building height estimation by

polarimetric multibaseline SAR [17] as well as for forest

scenarios [10].

The steering vector a(z), as a function of height z,

for one polarization channel is:

a(z) = [1 eiϕ2(z) . . . eiϕK(z)]
T

, (1)

where ϕm = −2kc(rm − r1), m = 1 . . . K. kc is the

central wavenumber and rm is the range distance from

the backscattering element to the m-th sensor position.

For polarimetric focusing, the data vectors of the dif-

ferent polarization channels yp1 . . .yp4 are subsequently

aligned within the signal vector y (shown here for 4

polarization channels (p1, . . . , p4)):

y(z) = [y1p1
(z) . . . yKp1

(z) . . . . . . y1p4
(z) . . . yKp4

(z)]T .
(2)

The polarimetric data vector for each look l = 1, . . . , N

can then be stored conveniently in the data matrix Y
using the following matrix structure:

Y = [y1 y2 . . .yN ] , (3)

such that the sample covariance matrix can be written as

R̂ =
1
N

YYH . (4)

In contrast to the single polarization case the steering

vectors a are filled into a steering matrix A according

to the data alignment as employed in y :

A =

⎡
⎢⎢⎣
a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

⎤
⎥⎥⎦ (5)

The estimation procedures for the different focusing

techniques are as follows:

a) Polarimetric MLBF: (1) Eigenvalue decompo-

sition of (AHR̂A) = UΓUH . (2) Extract the maxi-

mum eigenvalue λmax and its corresponding eigenvector

uλmax
. (3) The total power of the MLBF-focused tomo-

graphic signal is then given as: PB = λmax/p2, where p
is the total number of channels (polarimetric and spatial

separation).

b) Polarimetric Capon: (1) Eigenvalue decompo-

sition of (AHR̂−1A) = UΓUH . (2) Extract the mini-
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Fig. 2. Vertical slices through a 3-D volume of a forested area obtained from polarimetric multibaseline (a) L-Band and (b) P-band data set
using all (16, and 11) repeat-pass tracks. Red (HH), green (HV), blue (VV). Joint polarimetric-multibaseline tomographic focusing. Greyed
areas indicate ambiguous target regions. The tomographic slices run in south-northern direction (at easting coordinate E = 703670 m) and
are overlaid by the DEM (solid red line) and the DSM (solid green line) from ALS. Top: polarimetric MLBF, middle: polarimetric Capon,
bottom: polarimetric MUSIC.

mum eigenvalue λmin and its corresponding eigenvector

uλmin
. (3) The Capon spectral estimate is then obtained

as Pc = 1/λmin.

c) Polarimetric MUSIC: (1) Eigenvalue decompo-

sition of the sample covariance matrix R̂, and subsequent

extraction of its noise-subspace G. (2) Eigenvalue de-
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composition of (AHGGHA) = UΓUH . (3) Extract the

minimum eigenvalue λmin and the eigenvector uλmin
. (4)

The MUSIC pseudo-spectrum is then: Pmu = 1/λmin.

IV. RESULTS

In Fig. 1 vertical tomographic slices in south-northern

direction are given for the case where all polarization

channels were focused individually using MLBF, RCB,

and MUSIC. These tomographic slices were originally

published in [12] and are reproduced here for compari-

son. In Fig. 2 the respective vertical tomographic slices

are shown for the joint polarimetric-multibaseline tomo-

graphic focusing using polarimetric MLBF, polarimetric

Capon, and polarimetric MUSIC.

V. DISCUSSION

The results of the comparison obtained so far indicate

that a joint exploitation of polarization and baseline

diversity at the step of tomographic imaging is beneficial

in the sense that it leads to less biased estimates of

the main scattering locations in many cases since at

each potential source location the optimal polarization

state can be extracted. A joint combination of polar-

ization and baseline diversity also provides a way to

better maintain polarization information throughout the

tomographic focusing step not only in the beamforming

case (as shown in [13]) but also when using more

advanced spectral estimation methods, such as the Capon

spectral estimators. MUSIC seems to behave unstable

depending on the target structure; a major problem in

this case is the a priori selection of the model order.

In general, a trade-off has to be made with regard to a

higher amount of multilooking that is required to obtain

stable solutions for the fully-polarimetric tomographic

focusing. Thereby the resolution in the (ground-)range-

azimuth domain is reduced leading to a loss of smaller

features. Potentially interesting features, such as gaps in

the canopy, variation of the height of the canopy are

averaged out to a considerable extent, or might even be

lost completely.
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