A CAR-BORNE SAR AND INSAR EXPERIMENT

Othmar Frey
Gamma Remote Sensing /
Earth Observation &
Remote Sensing, ETH Zurich
Switzerland

Email: frey@gamma-rs.ch

Abstract—In this contribution, a car-borne SAR and
InSAR experiment is described. The slope of a valley
was imaged by means of a single-pass InSAR system
mounted on a car driving on roads along the bottom of the
valley. The GAMMA portable radar interferometer GPRI-
II hardware with a modified antenna configuration was
used for data acquisition. The experimental setup (1), SAR
imagery focused along a slightly curved sensor trajectory
(2), and first interferometric results (3) obtained using this
configuration are presented.

Index Terms—Synthetic aperture radar (SAR), ground-
based SAR system, SAR imaging, SAR interferometry, car-
borne SAR, CARSAR

I. INTRODUCTION

Synthetic aperture radar interferometric techniques
have been widely used to produce digital elevation
models (DEMs) on a regional to global scale and to
measure displacements in repeat-pass mode. Apart from
spaceborne and airborne radars, also ground-based radar
systems have appeared [1]-[4]. Ground-based radars
add complementary advantages, such as timely in-situ
measurements taken from a suitable viewpoint and re-
peatability of measurements in both time and space.
They are therefore suitable to measure ground motion, to
monitor land-slides, as well as to measure the topography
of the illuminated area. In 2007, Gamma Remote Sensing
developed a portable terrestrial real-aperture radar inter-
ferometer operating in the Ku-band at 17.2 GHz [1], [5].
The one-transmit-dual-receive configuration allows for a

simultaneous acquisition of two SAR data sets in a single
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pass. Therefore, an interferometric evaluation of the illu-
minated scene is possible including rapidly decorrelating
targets such as a forest. In addition, the atmospheric
phase contributions cancel out and there is potentially no
need to separate motion from topography for repeat-pass
measurements. For the experiment described here the
GPRI-II radar was employed in a modified configuration
to enable a synthetic aperture radar acquisition mode

from an agile platform.

II. EXPERIMENTAL SETUP

In Fig. 1(a) the GPRI-II real-aperture terrestrial radar
in its standard configuration is shown [2]. For the
synthetic aperture radar experiment described here the
following modifications were applied to the standard
GPRI-II hardware:

1) The long real-aperture antennas were replaced by
horn antennas to get a wider beamwidth which is
suited for the synthetic aperture radar mode.

2) A different antenna rack was used such that the

antennas can be mounted on the roof-top of a car.

3) Accurate positioning and basic attitude informa-

tion was acquired by means of carrier-phase-based

differential GPS measurements at an update rate of

20 Hz.

Interferometric SAR data was acquired along two
different roads (curved/straight) at different nearly con-
stant velocities. The example data set presented in this
contribution was taken from a slightly curved road at an

average speed of 21m/s. An overview of the system
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(a) GPRI-II standard configuration (terrestrial real-aperture radar). (b) Modified antenna configuration and antenna rack including

GPS antennas for accurate positioning as used in the CARSAR experiment.

TABLE I
GPRI-II GROUND BASED RADAR SYSTEM SPECIFICATIONS FOR
SYNTHETIC APERTURE RADAR MODE.

Carrier frequency 17.2 GHz
Chirp bandwidth 200 MHz
Type FMCW
Chirp length 0.001 s
Range 3dB beamwidth 18 deg
Azimuth 3dB beamwidth 16.9 deg
Ground speed 21 m/s
Interferometric baseline 025 m
Off-nadir angle 110 deg

parameters for this configuration is given in Table I.
Fig. 1(b) shows the modified radar system along with
the GPS antennas as mounted on the roof-top of a car

during their the synthetic aperture radar experiment.

III. PROCESSING METHODS

The linear FMCW-type GPRI-II radar works in

dechirp-on-receive mode, thus the received signal s(t)

is mixed with the reference signal. This transforms the

data to a deramped signal s, of the form [6]:

sa(t) = s*(t)exp(j2m fit + jmyt?), (1

where f; is the start frequency of the chirp and -y is the
chirp rate. The phase of the resulting deramped signal is

wa(t) = 2nfstn — W'yt%) + 27yt t, 2)

which can be directly related to range distance via a
range-Fourier transform. ¢,, is the two-way time delay to
a target n. In contrast to the matched-filter-based range
imaging, a range-dependent quadratic phase error (within
brackets), known as the residual video phase, remains
after this range-compression operation [7]. While for
static operation mode—which is the original purpose
of the GPRI-II radar—this residual video phase can be
neglected it has to be compensated if substantial range-
cell migration occurs in the synthetic aperture operation

mode.

SAR focusing along the slightly curved sensor tra-

jectory following a main road was performed using a
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Fig. 2. Example SAR imagery of a slope of a valley taken from the car-borne interferometric SAR system: (a) SAR intensity image, (b)
photograph of the imaged slope of the valley, (c) interferogram (blended with intensity image), (d) coherence magnitude.

time-domain back-projection processing approach [8]. tion that was set up on the test site. Due to the long chirp
Accurate positioning information was obtained by post- duration of 1 millisecond the start-stop approximation
processing of carrier-phase-based short-baseline differ- is not valid and therefore the time varying position of

ential GPS data relative to a GPS ad-hoc reference sta- the sensor has to be taken into account during back-
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projection processing. A detailed treatment of this aspect
is found in [9]).

IV. RESULTS

In Fig. 2(a) a focused SAR image taken from the inter-
ferometric radar mounted on the roof-top of a car driving
along a slightly curved highway is shown. Fig. 2(b)
shows a photograph of the valley slope imaged by the
car-borne SAR system. Figures 2(c) and 2(d) depict the
single-pass interferogram and the coherence magnitude,

respectively.

V. CONCLUSION

A CARSAR experiment using a modified configura-
tion of the Ku-band FMCW GPRI-II terrestrial radar
mounted on the roof-top of a car was described. First
results of the campaign were presented including focused
SAR imagery as well as single-pass interferometry from
a slightly curved sensor along a highway demonstrating
SAR imaging and single-pass SAR interferometry from
an agile car-borne radar system. The SAR and InSAR
data takes acquired within this experiment, which in-
cludes single-pass and repeat-pass data takes, are being
used as a testbed for development and testing of SAR
focusing and motion-compensation algorithms and also

to evaluate interferometric SAR applications.
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