BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'BP'

Articles in journal or book chapters

  1. Dario Tagliaferri, Mattia Brambilla, Monica Nicoli, and Umberto Spagnolini. Sensor-Aided Beamwidth and Power Control for Next Generation Vehicular Communications. IEEE Access, 9:56301-56317, 2021. Keyword(s): Degradation, Power control, Sensor systems, Sensors, Trajectory, Vehicle dynamics, Global Positioning System, Beam pointing, beam tracking, beamwidth and power control, on-board sensors, V2X. [Abstract] [bibtex-entry]


  2. Weike Feng, Jean-Michel Friedt, Giovanni Nico, Suyun Wang, Gilles Martin, and Motoyuki Sato. Passive Bistatic Ground-Based Synthetic Aperture Radar: Concept, System, and Experiment Results. Remote Sensing, 11(15), 2019. [Abstract] [bibtex-entry]


  3. Jan Torgrimsson, Patrick Dammert, Hans Hellsten, and Lars M. H. Ulander. SAR Processing Without a Motion Measurement System. IEEE Transactions on Geoscience and Remote Sensing, 57(2):1025-1039, February 2019. Keyword(s): SAR Processsing, Backprojection, Fast-factorized Back-projection, FFBP, Time-Domain Back-Projection, TDBP, Azimuth Focusing, Motion Compensation, MoComp, autofocus, geometric autofocus, radar imaging, synthetic aperture radar, synthetic aperture radar image, very high frequency band, base-2 fast factorized back-projection, track velocity error, CARABAS II system, ultrawideband data sets, innovative autofocus concept, subaperture pair, free geometry parameters, back-projection formulation, factorized geometrical autofocus, SAR processing, FGA algorithm, VHF-band, wavelength-resolution SAR image, FGA images, linear equidistant track, basic geometry model, Geometry, Synthetic aperture radar, Global Positioning System, Tracking, Apertures, Radar tracking, Autofocus, back-projection (BP), factorized geometrical autofocus (FGA), Synthetic Aperture Radar (SAR). [Abstract] [bibtex-entry]


  4. Pengfei Xie, Man Zhang, Lei Zhang, and Guanyong Wang. Residual Motion Error Correction with Backprojection Multisquint Algorithm for Airborne Synthetic Aperture Radar Interferometry. Sensors, 19(10), 2019. Keyword(s): SAR Processing, Time-Domain Back-Projection, Back-Projection, TDBP, Non-Linear Flight Tracks, Curvilinear SAR, digital elevation model, Airborne SAR, Motion Compensation, MoComp, Residual Motion Errors, Multisquint, Multi-aperture interferometry, MAI. [Abstract] [bibtex-entry]


  5. Ning Cao, Hyongki Lee, Evan Zaugg, Ramesh Shrestha, William E. Carter, Craig Glennie, Zhong Lu, and Hanwen Yu. Estimation of Residual Motion Errors in Airborne SAR Interferometry Based on Time-Domain Backprojection and Multisquint Techniques. IEEE Trans. Geosci. Remote Sens., 56(4):2397-2407, 2018. Keyword(s): SAR Processing, Interferometry, SAR Interferometry, InSAR, Differential SAR Interferometry, DInSAR, deformation monitoring, subsidence monitoring, Displacement, Focusing, Radar antennas, Synthetic aperture radar, Time-domain analysis, Trajectory, Backprojection (BP), SAR interferometry (InSAR), motion compensation (MoCo), residual motion error (RME), synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  6. Ning Cao, Hyongki Lee, Evan Zaugg, R. Shrestha, W. Carter, C. Glennie, G. Wang, Z. Lu, and J. C. Fernandez-Diaz. Airborne DInSAR Results Using Time-Domain Backprojection Algorithm: A Case Study Over the Slumgullion Landslide in Colorado With Validation Using Spaceborne SAR, Airborne LiDAR, and Ground-Based Observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(11):4987-5000, November 2017. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Backprojection, Repeat-Pass Interferometry, SAR Interferometry, Displacement, Deformation Measurement, Aircraft, Interferometry, L-band, Spaceborne radar, Synthetic aperture radar, Terrain factors, Trajectory, Backprojection (BP), InSAR, SAR, differential synthetic aperture radar interferometry (DInSAR), landslide, motion compensation (MoCo), residual motion error (RME), Airborne SAR. [Abstract] [bibtex-entry]


  7. S. A. V. Synnes, A. J. Hunter, Roy E. Hansen, T. O. Saebo, H. J. Callow, R. van Vossen, and A. Austeng. Wideband Synthetic Aperture Sonar Backprojection With Maximization of Wave Number Domain Support. IEEE Journal of Oceanic Engineering, 42(4):880-891, October 2017. Keyword(s): Synthetic Aperture Sonar, SAS, image filtering, image resolution, optimisation, sensor arrays, sonar imaging, synthetic aperture sonar, time-domain analysis, BP, SAS arrays, SAS image formation algorithms, TDBP access data, WD filtering, aspect-dependent scattering, data degradation, frequency-dependent scattering, generic SAS design, sensor data quality, spatial domain quality metrics, time domain backprojection access data, wave number domain counterpart, wave number domain support maximization, wideband SAS systems, wideband synthetic aperture sonar backprojection, widebeam synthetic aperture sonar backprojection, Image resolution, Imaging, Performance evaluation, Scattering, Sonar applications, Synthetic aperture sonar, Wideband, Along-track ambiguity, backprojection (BP) algorithm, grating lobes, synthetic aperture sonar (SAS), wideband sonar. [Abstract] [bibtex-entry]


  8. Jamal Saeedi and Karim Faez. A back-projection autofocus algorithm based on flight trajectory optimization for synthetic aperture radar imaging. Multidimensional Systems and Signal Processing, 27(2):411, April 2016. [Abstract] [bibtex-entry]


  9. Octavio Ponce, Pau Prats-Iraola, Muriel Pinheiro, Marc Rodriguez-Cassola, Rolf Scheiber, Andreas Reigber, and Alberto Moreira. Fully Polarimetric High-Resolution 3-D Imaging With Circular SAR at L-Band. IEEE Trans. Geosci. Remote Sens., 52(6):3074-3090, June 2014. Keyword(s): SAR Processing, Circular SAR, Time-Domain Back-Projection, TDBP, MoComp, Motion Compensation, Bandwidth, Image resolution, Imaging, L-band, Synthetic aperture radar, Trajectory, Autofocus, circular synthetic aperture radar (CSAR), fast factorized back-projection, FFBP, graphics processing unit (GPU), high-resolution SAR, polarimetry, synthetic aperture radar (SAR), tomography, SAR Tomography. [Abstract] [bibtex-entry]


  10. Francesco De Zan, A. Parizzi, Pau Prats-Iraola, and Paco López-Dekker. A SAR Interferometric Model for Soil Moisture. IEEE_J_GRS, 52(1):418-425, January 2014. Keyword(s): dielectric properties, hydrological techniques, radar interferometry, remote sensing by radar, soil, synthetic aperture radar, Born approximation, L-band airborne SAR data, SAR interferometric model, coherence magnitudes, complex interferometric coherences, geometrical properties, interferogram triplets, phase consistency, plane waves, quantitatively synthetic aperture radar interferometric observables, scattering models, soil moisture, tomography, vertical complex wavenumbers, Coherence, L-band, Moisture, Soil moisture, Synthetic aperture radar, synthetic aperture radar (SAR) interferometry. [Abstract] [bibtex-entry]


  11. Lei Zhang, Hao-lin Li, Zhi-Jun Qiao, and Zhi-wei Xu. A Fast BP Algorithm With Wavenumber Spectrum Fusion for High-Resolution Spotlight SAR Imaging. IEEE Geosci. Remote Sens. Lett., 11(9):1460-1464, September 2014. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Fast Backprojection, fast Fourier transforms, image fusion, image resolution, interpolation, radar imaging, synthetic aperture radar, transient response, AFBP algorithm, FFBP algorithm, SA fusion, UPC system, WN spectrum domain, accelerated fast backprojection algorithm, fast Fourier transform, fast factorization backprojection algorithm, high-resolution spotlight SAR imaging, image-domain interpolation, impulse response function, interpolation-based fusion, subaperture fusion, synthetic aperture radar, unified polar coordinate system, wavenumber spectrum fusion, Apertures, Azimuth, Image resolution, Imaging, Interpolation, Signal processing algorithms, Synthetic aperture radar, Accelerated fast BP (AFBP), fast backprojection (FBP), fast factorized backprojection (FFBP). [Abstract] [bibtex-entry]


  12. Enes Yigit, Sevket Demirci, Caner Ozdemir, and Mustafa Tekbas. Short-range ground-based synthetic aperture radar imaging: performance comparison between frequency-wavenumber migration and back-projection algorithms. Journal of Applied Remote Sensing, 7(1):1-13, 2013. Keyword(s): GBSAR, SAR Processing, Ground-based SAR, Synthetic aperture radar, TDBP, Time-Domain Back-Projection, omega-k, Range Migration Algorithm, Wavenumber Domain Algorithm. [Abstract] [bibtex-entry]


  13. Lei Zhang, Hao-lin Li, Zhi-Jun Qiao, Meng-Dao Xing, and Zheng Bao. Integrating Autofocus Techniques With Fast Factorized Back-Projection for High-Resolution Spotlight SAR Imaging. IEEE Geosci. Remote Sens. Lett., 10(6):1394-1398, November 2013. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Time-Domain Back-Projection, TDBP, Fourier transforms, geophysical techniques, remote sensing by radar, synthetic aperture radar, BP coordinate, BP imagery, FFBP SA images, FFBP recursion, FFBP sub-aperture images, Fourier transform, MAMD algorithm, MAMD recursion, conventional autofocus techniques integration, fast factorized back-projection, high efficiency FFBP, high precision FFBP, high-resolution SAR imaging, high-resolution spotlight SAR imaging, high-resolution synthetic aperture radar imaging, novel multiple aperture map drift algorithm, phase correction, phase error function, range-compressed phase history data, raw data, real data experiments, well-focused imagery, Apertures, Azimuth, Doppler effect, Fourier transforms, History, Signal processing algorithms, Synthetic aperture radar, Autofocus, back-projection (BP), fast factorized back-projection (FFBP), multiple aperture map drift (MAMD), synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  14. J. N. Ash. An Autofocus Method for Backprojection Imagery in Synthetic Aperture Radar. IEEE Geoscience and Remote Sensing Letters, 9(1):104-108, January 2012. Keyword(s): SAR Processing, Autofocus, autoregressive processes, convolution, digital elevation models, geophysical image processing, geophysical techniques, radar imaging, synthetic aperture radar, convolution backprojection, autofocus method, backprojection imagery, autofocus routine, spotlight-mode synthetic aperture radar data, image sharpness, imaging geometry, wide-angle aperture, digital elevation map, image-quality-based autofocus approach, natural geometric interpretation, optimal single-pulse phase correction, quartic polynomial, sequential imaging application, autoregressive backprojection, Synthetic aperture radar, Imaging, Apertures, Measurement, Optimization, History, Azimuth, Autofocus, autoregressive backprojection (ARBP), convolution BP (CBP) imaging, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  15. Robert Wang, Otmar Loffeld, Qurat Ul-Ann, Holger Nies, Amaya Medrano Ortiz, and Ashraf Samarah. A Bistatic Point Target Reference Spectrum for General Bistatic SAR Processing. IEEE Trans. Geosci. Remote Sens.L, 5(3):517-521, July 2008. Keyword(s): SAR Processing, Bistatic SAR, Loffeld bistatic formula, airborne configuration, azimuth time-bandwidth products, bistatic point target reference spectrum, bistatic synthetic aperture radar, general bistatic SAR processing, spaceborne configuration, total azimuth modulation, total azimuth phase, geophysical signal processing, radar signal processing, synthetic aperture radar. [Abstract] [bibtex-entry]


  16. Brian D. Rigling and Randolph L. Moses. Polar format algorithm for bistatic SAR. Aerospace and Electronic Systems, IEEE Transactions on, 40(4):1147-1159, 2004. Keyword(s): SAR Processing, backpropagation, computational complexity, matched filters, radar imaging, synthetic aperture radar, Back-Projection, Time-Domain Back-Projection, Fast Back-Projection, Bistatic SAR, bistatic far-field assumption, matched filtering, monostatic SAR image formation, phase history data, Polar Format Algorithm. [Abstract] [bibtex-entry]


  17. B.D. Rigling and R.L. Moses. Polar format algorithm for bistatic SAR. IEEE_J_AES, 40(4):1147-1159, October 2004. Keyword(s): SAR Processing, Bistatic SAR, Time-Domain Back-Projection, TDBP, back-projection, bistatic far-field assumption, matched filtering, monostatic SAR image formation, phase history data, polar format algorithm, synthetic aperture radar, backpropagation, computational complexity, matched filters, radar imaging, synthetic aperture radar. [Abstract] [bibtex-entry]


Conference articles

  1. Badreddine Rekioua, Matthieu Davy, and Laurent Ferro-Famil. Snowpack characterization using SAR tomography: experimental results of the AlpSAR campaign. In Radar Conference (EuRAD), 2015 European, pages 33-36, Sept 2015. Keyword(s): SAR Processing, Tomography, SAR tomography, Antennas, Ice, Lenses, Refractive index, Snow, Ground-based SAR. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:22:50 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html