BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications of Hans Hellsten

Articles in journal or book chapters

  1. Jan Torgrimsson, Patrick Dammert, Hans Hellsten, and Lars M. H. Ulander. SAR Processing Without a Motion Measurement System. IEEE Transactions on Geoscience and Remote Sensing, 57(2):1025-1039, February 2019. Keyword(s): SAR Processsing, Backprojection, Fast-factorized Back-projection, FFBP, Time-Domain Back-Projection, TDBP, Azimuth Focusing, Motion Compensation, MoComp, autofocus, geometric autofocus, radar imaging, synthetic aperture radar, synthetic aperture radar image, very high frequency band, base-2 fast factorized back-projection, track velocity error, CARABAS II system, ultrawideband data sets, innovative autofocus concept, subaperture pair, free geometry parameters, back-projection formulation, factorized geometrical autofocus, SAR processing, FGA algorithm, VHF-band, wavelength-resolution SAR image, FGA images, linear equidistant track, basic geometry model, Geometry, Synthetic aperture radar, Global Positioning System, Tracking, Apertures, Radar tracking, Autofocus, back-projection (BP), factorized geometrical autofocus (FGA), Synthetic Aperture Radar (SAR). [Abstract] [bibtex-entry]


  2. Jan Torgrimsson, Patrik Dammert, Hans Hellsten, and Lars M. H. Ulander. An Efficient Solution to the Factorized Geometrical Autofocus Problem. IEEE Transactions on Geoscience and Remote Sensing, 54(8):4732-4748, August 2016. Keyword(s): SAR Processing, Autofocus, Fast-Factorized Back-Projection, FFBP, radar imaging, synthetic aperture radar, 6-D autofocus problem, FGA algorithm, adjustable geometry parameters, factorized back-projection formulation, factorized geometrical autofocus problem, geometrical variation, global autofocus solution, magnitude values, maximizing focus quality, peak-to-sidelobe ratio, point-like targets, synthetic-aperture-radar processing, ultrawideband CARABAS II data, Apertures, Geometry, Radar imaging, Radar tracking, Search problems, Synthetic aperture radar, Autofocus, back-projection, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  3. Jan Torgrimsson, Patrik Dammert, Hans Hellsten, and Lars M. H. Ulander. Factorized Geometrical Autofocus for Synthetic Aperture Radar Processing. IEEE Trans. Geosci. Remote Sens., 52(10):6674-6687, October 2014. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Time-Domain Back-Projection, TDBP, Airborne SAR, CARABAS Autofocus, SAR Autofocus, Geometrical Autofocus, radar imaging, radar tracking, synthetic aperture radar, ultra wideband radar, FGA algorithm, coherent all radio band system II data set, constrained problem, factorized geometrical autofocus algorithm, fast factorized back-projection chain, gain 3 dB, intensity correlation, object function, peak-to-sidelobe ratio measurement, radar imaging, residual space variant range cell migration, ultrawideband synthetic aperture radar processing, Apertures, Electronics packaging, Geometry, Radar tracking, Synthetic aperture radar, Transforms, Autofocus, back-projection, phase gradient algorithm (PGA), synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  4. Viet Thuy Vu, Thomas K. Sjogren, Mats I. Pettersson, and H. Hellsten. An Impulse Response Function for Evaluation of UWB SAR Imaging. IEEE Transactions on Signal Processing, 58(7):3927-3932, July 2010. Keyword(s): SAR Processing, impulse response function evaluation, Resolution, Range Resolution, Azimuth Resolution, IRF, UWB, object detection, radar imaging, synthetic aperture radar, transient response, ultra wideband radar, IRF-SAR, UWB SAR imaging, image quality measurement, impulse response function, narrowband-narrowbeam SAR systems, point target, spatial resolution estimation, two-dimensional sine function, Impulse response function in SAR imaging (IRF-SAR), Sinc, impulse response function in UWB SAR imaging (IRF-USAR), synthetic aperture radar (SAR), ultrawideband-ultrawidebeam (UWB). [Abstract] [bibtex-entry]


  5. Lars M. H. Ulander, Hans Hellsten, and Gunnar Stenström. Synthetic-Aperture Radar Processing Using Fast Factorized Back-Projection. IEEE Transactions on Aerospace and Electronic Systems, 39(3):760-776, July 2003. Keyword(s): SAR Processing, Fast Factorized Back-Projection, Time-Domain Back-Projection, TDBP, Back-Projection, Fast Back-Projection, Factorized Back-Projection, Ultra-Wideband SAR, VHF SAR, CARABAS, Airborne SAR. [Abstract] [bibtex-entry]


  6. H. Israelsson, L. M. H. Ulander, J. L. H. Askne, J. E. S. Fransson, P.-O. Frölind, A. Gustavsson, and H. Hellsten. Retrieval of forest stem volume using VHF SAR. IEEE Trans. Geosci. Remote Sens., 35(1):36-40, January 1997. Keyword(s): SAR Processing, Forest, Forest parameters, biomass, 28 to 60 MHz, CARABAS, HF radar, Oland, SAR, Sweden, VHF radar, airborne radar, backscattering coefficient, biomass, coherent all radio band sensing, deciduous mixed forest, dense forest, discrimination, forest stem volume, forestry, geophysical measurement technique, horizontal dipole array, radar imaging, radar remote sensing, radar scattering, tree trunk, vegetation mapping, wood, airborne radar, forestry, geophysical techniques, radar cross-sections, radar imaging, remote sensing by radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  7. Hans Hellsten and Lars E. Andersson. An inverse method for the processing of synthetic aperture radar data. Inverse Problems, 3(1):111-124, 1987. Keyword(s): SAR Processing, Back-Projection, Hankel Transform, Fourier-Hankel Inversion, Abel Transform. [Abstract] [bibtex-entry]


Conference articles

  1. Jan Torgrimsson, Patrik Dammert, Hans Hellsten, and Lars M. H. Ulander. Autofocus and analysis of geometrical errors within the framework of fast factorized back-projection. In Edmund Zelnio and Frederick D. Garber, editors, Proc. SPIE, volume 9093, pages 909303-909303-16, 2014. International Society for Optics and Photonics, SPIE. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Time-Domain Back-Projection, TDBP, Autofocus, SAR Autofocus, Geometrical Autofocus, Airborne SAR, CARABAS, factorized geometrical autofocus algorithm, fast factorized back-projection chain, gain 3 dB, intensity correlation, object function, peak-to-sidelobe ratio measurement, radar imaging, residual space variant range cell migration, ultrawideband synthetic aperture radar processing, Apertures, Electronics packaging, Geometry, Radar tracking, Synthetic aperture radar, Transforms, Autofocus, back-projection, phase gradient algorithm, PGA, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  2. Hans Hellsten, Patrick Dammert, and Anders Ahlander. Autofocus in fast factorized backprojection for processing of SAR images when geometry parameters are unknown. In Proc. IEEE Radar Conf., pages 603-608, May 2010. Keyword(s): SAR Processing, Autofocus, Time-Domain Back-Projection, TDBP, FFBP, SAR image processing, antenna path parameters, autofocus, fast factorized backprojection, radar imaging, synthetic aperture radar. [Abstract] [bibtex-entry]


  3. A. Ahlander, H. Hellsten, K. Lind, J. Lindgren, and B. Svensson. Architectural Challenges in Memory-Intensive, Real-Time Image Forming. In Int. Conf. on Parallel Processing, pages 35-35, Sept. 2007. Keyword(s): SAR Processing, Back-Projection, Time-Domain Back-Projection, Fast-Factorized Back-Projection, FFBP, GBP, interpolation, parallel algorithms, parallel architectures, radar imaging, real-time systems, storage management, synthetic aperture radarcomplex memory access pattern, computer architecture, flight path error compensation, memory-intensive real-time image forming, parallel algorithm, performance-intensive data interpolation, synthetic aperture radar system. [Abstract] [bibtex-entry]


  4. Lars M. H. Ulander, Per-Olov Frölind, A. Gustavsson, H. Hellsten, T. Jonsson, B. Larsson, and G. Stenstrom. Performance of the CARABAS-II VHF-Band Synthetic Aperture Radar. In IGARSS '01, International Geoscience and Remote Sensing Symposium, volume 1, pages 129 - 131, Jul. 2001. Keyword(s): SAR Processing, RFI Suppression, Back-Projection, Ultra-Wideband SAR, Time-Domain Back-Projection, TDBP, VHF SAR, CARABAS, Airborne SAR. [Abstract] [bibtex-entry]


  5. Lars M. H. Ulander, Hans Hellsten, and Gunnar Stenström. Performance analysis of fast backprojection for synthetic-aperture radar processing. In Edmund G. Zelnio, editor, Proc. of SPIE Vol. 4382, Algorithms for Synthetic Aperture Radar Imagery VIII, number 1, pages 13-21, 2001. SPIE. Keyword(s): SAR Processing, Back-Projection, Time-Domain Back-Projection, TDBP, Fast Back-Projection, inversion. [Abstract] [bibtex-entry]


  6. Olle Seger, Magnus Herberthson, and Hans Hellsten. Real time SAR processing of low frequency ultra wide band radar data. In Proc. of EUSAR '98 - European Conference on Synthetic Aperture Radar, pages 489-492, May 1998. Keyword(s): SAR Processing, Back-Projection, Time-Domain Back-Projection, TDBP, Local Back-Projection, Real Time Operation, Ultra-Wideband SAR, FOPEN, Image processing, Ground Penetrating Radar, Low-Frequency SAR, Image Reconstruction, Radar Resolution, Parallel Processing. [Abstract] [bibtex-entry]


  7. H. Hellsten, Lars M. H. Ulander, A. Gustavsson, and B. Larsson. Development of VHF CARABAS II SAR. In Proc. SPIE, volume 2747, pages 48-60, June 1996. [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:22:27 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html