BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'agricultural fields'

Articles in journal or book chapters

  1. Zahra Sadeghi, M. J. Valadan Zoej, and J. P. Muller. Monitoring Land Subsidence in a Rural Area Using a Combination of ADInSAR and Polarimetric Coherence Optimization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(8):3582-3590, August 2017. Keyword(s): environmental monitoring (geophysics), geomorphology, optimisation, radar interferometry, radar polarimetry, remote sensing by radar, synthetic aperture radar, MCPO, North Iran, Tehran basin, TerraSAR-X images, agricultural fields, coherence-set based polarimetry optimization, coherent pixel density, differential synthetic aperture radar interferometry, land subsidence monitoring, modified coherence set-based polarimetry optimization, pixel phase quality, polarimetric ADInSAR, polarimetric DInSAR, polarimetric coherence optimization, rural area, satellites, search polarimetry optimization, single-baseline coherence optimization method, single-baseline coherence optimization technique, Coherence, Interferometry, Optimization methods, Polarimetry, Synthetic aperture radar, Advanced differential synthetic aperture radar interferometry (ADInSAR), coherence optimization, polarimetric differential synthetic aperture radar interferometry (DInSAR), polarimetry. [Abstract] [bibtex-entry]


  2. Pau Prats, J. J. Mallorqui, Andreas Reigber, Rolf Scheiber, and Alberto Moreira. Estimation of the Temporal Evolution of the Deformation Using Airborne Differential SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 46(4):1065-1078, April 2008. Keyword(s): SAR Processing, DInSAR, InSAR, Interferometry, digital elevation models, error analysis, motion compensation, MoComp, radar interferometry, Multi-Baseline SAR, synthetic aperture radar, topography (Earth)DLR, Experimental SAR system, E-SAR, Airborne SAR, German Aerospace Center, agricultural fields, airborne differential synthetic aperture radar interferometry, baseline error, corner reflector, deformation, differential interferometry processor, digital elevation model, image coregistration, residual motion errors, temporal evolution, topography. [Abstract] [bibtex-entry]


  3. M. C. Dobson, F. T. Ulaby, T. LeToan, A. Beaudoin, E. S. Kasischke, and N. Christensen. Dependence of radar backscatter on coniferous forest biomass. IEEE Trans. Geosci. Remote Sens., 30(2):412-415, March 1992. Keyword(s): SAR Processing, Forest, Forest parameters, biomass, C-band, Duke, France, L-band, Landes, North Carolina, P-band, SAR data, United States, age, coniferous forest biomass, maritime pines, plantations, radar backscatter, remote sensing, backscatter, ecology, forestry, remote sensing by radar. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:39:08 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html