Publications about 'interferogram generation'

Articles in journal or book chapters

  1. Gianfranco Fornaro, Simona Verde, Diego Reale, and Antonio Pauciullo. CAESAR: An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline - Multitemporal Interferometric SAR Processing. IEEE Trans. Geosci. Remote Sens., 53(4):2050-2065, April 2015. Keyword(s): SAR Processing, SAR Tomography, Component Extraction And selection SAR, CEASAR, Spaceborne SAR, multilook SAR tomography, X-Band, Urban, Persistent Scatterer Interferometry, PSI, covariance matrices, geophysical signal processing, matrix decomposition, principal component analysis, radar interferometry, radar signal processing, remote sensing by radar, synthetic aperture radar, tomography, CAESAR, Component Extraction and Selection SAR algorithm, SAR tomography, SqueeSAR, classical interferometric processing, coherence losses, covariance matrix analysis, covariance matrix decomposition, data covariance matrix, equivalent scattering mechanisms, ground deformation monitoring, high resolution Cosmo-SkyMed data, high resolution interferometric SAR sensors, interferometic stac filtering, multibaseline-multitemporal interferometric SAR processing, multilook operation, multiple scatterers, principal component analysis, synthetic aperture radar, Covariance matrices, Interferometry, Monitoring, Scattering, Spatial resolution, Synthetic aperture radar, Tomography, 3-D, 4-D and multidimensional (Multi-D) SAR imaging, Covariance matrix decomposition, SAR interferometry (InSAR), SAR tomography. [Abstract] [bibtex-entry]

  2. Christophe Magnard, Max Frioud, David Small, Torsten Brehm, Helmut Essen, and Erich Meier. Processing of MEMPHIS Ka-Band Multibaseline Interferometric SAR Data: From Raw Data to Digital Surface Models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7):2927-2941, July 2014. Keyword(s): SAR Processing, SAR Interferometry, InSAR, Multibaseline Interferometry, Ka-band, Airborne SAR, Single-pass Multibaseline Interferometry, Focusing, Azimuth Focusing, Motion Compensation, data acquisition, geophysical image processing, image reconstruction, image resolution, millimetre wave radar, radar imaging, radar interferometry, radar polarimetry, radar resolution, synthetic aperture radar, DSM, MEMPHIS Ka-band multibaseline interferometric SAR data processing, SAR image resolution, azimuth focusing, cross-track multibaseline interferometric data acquisition, digital surface model, extended omega-K algorithm, interferogram generation, millimeter-wave synthetic aperture radar system, multibaseline antenna setup, observed depression angle-dependent interferometric phase error, phase unwrapping, phase-to-height conversion, reference ALS model, stepped-frequency SAR data reconstruction, Accuracy, Antennas, Azimuth, Chirp, Focusing, Motion compensation, Synthetic aperture radar, Digital surface model (DSM), Ka-band, MEMPHIS, interferometry, millimeter wave radar, multibaseline, stepped-frequency, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]

  3. G. Fornaro, A. Pauciullo, and D. Reale. A Null-Space Method for the Phase Unwrapping of Multitemporal SAR Interferometric Stacks. IEEE Transactions on Geoscience and Remote Sensing, 49(6):2323-2334, June 2011. Keyword(s): SAR Processing, DInSAR, SAR Interferometry, Phase unwrapping, 2-D azimuth-range domain, Earth surface displacement, MCF algorithm, data analysis, full 3-D unwrapping method, interferogram generation scheme, interferogram spatial structure, multitemporal SAR interferometric stack analysis, multitemporal differential interferometric synthetic aperture radar analysis, null-space method, optimization technique, phase unwrapping method, spatial baseline domain, time series, unrestricted phase signal reconstruction, data analysis, geophysical techniques, radar interferometry, synthetic aperture radar, time series, topography (Earth). [Abstract] [bibtex-entry]

  4. Jean-Marie Nicolas, Gabriel Vasile, Michel Gay, Florence Tupin, and Emmanuel Trouvé. SAR processing in the temporal domain: application to direct interferogram generation and mountain glacier monitoring. Canadian Journal of Remote Sensing, 33(1):52-59, 2007. Keyword(s): SAR Processing, Time-Domain Back-Projection, InSAR, Interferometry, SAR Interferometry, Glacier Displacement Measurement, ERS, Spaceborne SAR. [Abstract] [bibtex-entry]



Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.

Last modified: Mon Feb 1 16:40:11 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .

This document was translated from BibTEX by bibtex2html