Publications about 'Phase history'

Articles in journal or book chapters

  1. S. T. Peters, D. M. Schroeder, M. S. Haynes, D. Castelletti, and A. Romero-Wolf. Passive Synthetic Aperture Radar Imaging Using Radio-Astronomical Sources. IEEE Trans. Geosci. Remote Sens., pp 1-16, 2021. Keyword(s): Synthetic aperture radar, Passive radar, Sun, Radar, Focusing, Signal to noise ratio, Mathematical model, Passive radar, passive radio sounding, passive synthetic aperture radar (SAR), radio echo sounding, Back-Projection, Time-Domain Back-Projection, TDBP. [Abstract] [bibtex-entry]

  2. E Bleszynski, M Bleszynski, and T Jaroszewicz. Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures. Inverse Problems, 29(5):054004, April 2013. Keyword(s): SAR Processing, Autofocus, Airborne SAR, Gotcha SAR Data. [Abstract] [bibtex-entry]

  3. Lei Zhang, Hao-lin Li, Zhi-Jun Qiao, Meng-Dao Xing, and Zheng Bao. Integrating Autofocus Techniques With Fast Factorized Back-Projection for High-Resolution Spotlight SAR Imaging. IEEE Geosci. Remote Sens. Lett., 10(6):1394-1398, November 2013. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Time-Domain Back-Projection, TDBP, Fourier transforms, geophysical techniques, remote sensing by radar, synthetic aperture radar, BP coordinate, BP imagery, FFBP SA images, FFBP recursion, FFBP sub-aperture images, Fourier transform, MAMD algorithm, MAMD recursion, conventional autofocus techniques integration, fast factorized back-projection, high efficiency FFBP, high precision FFBP, high-resolution SAR imaging, high-resolution spotlight SAR imaging, high-resolution synthetic aperture radar imaging, novel multiple aperture map drift algorithm, phase correction, phase error function, range-compressed phase history data, raw data, real data experiments, well-focused imagery, Apertures, Azimuth, Doppler effect, Fourier transforms, History, Signal processing algorithms, Synthetic aperture radar, Autofocus, back-projection (BP), fast factorized back-projection (FFBP), multiple aperture map drift (MAMD), synthetic aperture radar (SAR). [Abstract] [bibtex-entry]

  4. Yuanyuan Wang, Xiao Xiang Zhu, and Richard Bamler. Retrieval of phase history parameters from distributed scatterers in urban areas using very high resolution SAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 73(0):89 - 99, 2012. Keyword(s): SAR Processing, Interferometry, SAR Interferometry, InSAR, Persistent Scatterer Interferometry, PSI, Phase history, Distributed scatterer, Covariance matrix, TerraSAR-X, Spaceborne SAR. [Abstract] [bibtex-entry]

  5. Jehanzeb Burki and Christopher F. Barnes. Slant Plane CSAR Processing Using Householder Transform. IEEE Transactions on Image Processing, 17(10):1900-1907, October 2008. Keyword(s): SAR Processing, Circular SAR, Azimuth Focusing, Fourier transforms, radar imaging, synthetic aperture radar, Fourier analysis-based focusing, Householder transform, ground plane circular SAR signal, linear shift-varying system, slant plane CSAR processing, synthetic aperture radar, Adaptive optics, Fourier transforms, History, Image analysis, Image reconstruction, Optical imaging, Optical sensors, Optical signal processing, Radar polarimetry, Synthetic aperture radar, 2-D aperture synthesis, Circular aperture, Fourier optics, Fourier transform, Householder transform, circular synthetic aperture radar (CSAR), synthetic aperture radar (SAR), Algorithms, Fourier Analysis, Image Enhancement, Image Interpretation, Computer-Assisted, Imaging, Three-Dimensional, Radar, Reproducibility of Results, Sensitivity and Specificity. [Abstract] [bibtex-entry]

  6. Robert Wang, Otmar Loffeld, Qurat Ul-Ann, Holger Nies, Amaya Medrano Ortiz, and Ashraf Samarah. A Bistatic Point Target Reference Spectrum for General Bistatic SAR Processing. IEEE Trans. Geosci. Remote Sens.L, 5(3):517-521, July 2008. Keyword(s): SAR Processing, Bistatic SAR, Loffeld bistatic formula, airborne configuration, azimuth time-bandwidth products, bistatic point target reference spectrum, bistatic synthetic aperture radar, general bistatic SAR processing, spaceborne configuration, total azimuth modulation, total azimuth phase, geophysical signal processing, radar signal processing, synthetic aperture radar. [Abstract] [bibtex-entry]

  7. Pau Prats, Andreas Reigber, and Jordi J. Mallorqui. Topography-dependent motion compensation for repeat-pass interferometric SAR systems. IEEE Geosci. Remote Sens. Lett., 2(2):206-210, 2005. Keyword(s): SAR Processing, Motion Compensation, Topography-Based Motion Compensation, ESAR, L-Band, Airborne SAR, radar imaging, remote sensing by radar, synthetic aperture radar, Topography, German Aerospace Center E-SAR, DLR, SAR data processing, airborne L-band repeat-pass interferometric data, Interferometry, Chirp Scaling Algorithm, Extended Chirp Scaling Algorithm, azimuth compression, azimuth coregistration errors, external digital elevation model, DEM, image enhancement, image registration, impulse response degradation, phase artifacts, repeat-pass interferometric SAR systems, Calibration, image registration, repeat-pass interferometry. [Abstract] [bibtex-entry]

  8. B.D. Rigling and R.L. Moses. Flight path strategies for 3-D scene reconstruction from bistatic SAR. Radar, Sonar and Navigation, IEE Proceedings -, 151(3):149-157, 2004. Keyword(s): SAR Processing, Non-linear Flight Path, SAR Tomography, Curvilinear SAR, Bistatic SAR, airborne radar, image reconstruction, parameter estimation, radar imaging, synthetic aperture radar, 3-D scene reconstruction, bistatic SAR, data collection strategy, flight path strategies, nonlinear receiver trajectory, nonparametric scene reconstructions, phase history, receiver flight paths, three-dimensional information, three-dimensional scattering centre location parameter estimates, three-dimensional scene information. [Abstract] [bibtex-entry]

  9. B.D. Rigling and R.L. Moses. Polar format algorithm for bistatic SAR. IEEE_J_AES, 40(4):1147-1159, October 2004. Keyword(s): SAR Processing, Bistatic SAR, Time-Domain Back-Projection, TDBP, back-projection, bistatic far-field assumption, matched filtering, monostatic SAR image formation, phase history data, polar format algorithm, synthetic aperture radar, backpropagation, computational complexity, matched filters, radar imaging, synthetic aperture radar. [Abstract] [bibtex-entry]

  10. Brian D. Rigling and Randolph L. Moses. Polar format algorithm for bistatic SAR. Aerospace and Electronic Systems, IEEE Transactions on, 40(4):1147-1159, 2004. Keyword(s): SAR Processing, backpropagation, computational complexity, matched filters, radar imaging, synthetic aperture radar, Back-Projection, Time-Domain Back-Projection, Fast Back-Projection, Bistatic SAR, bistatic far-field assumption, matched filtering, monostatic SAR image formation, phase history data, Polar Format Algorithm, synthetic aperture radar. [Abstract] [bibtex-entry]

  11. Stefan Buckreuss. Motion errors in an airborne synthetic aperture radar system. European Transactions on Telecommunications, 2(6):655-664, 1991. Keyword(s): SAR Processing, Airborne SAR, Motion Compensation, MoComp, motion errors. [Abstract] [bibtex-entry]

  12. Ciro Cafforio, Claudio Prati, and Fabio Rocca. SAR Data Focusing Using Seismic Migration Techniques. IEEE Transactions on Aerospace and Electronic Systems, 27(2):194-207, March 1991. Keyword(s): SAR Processing, Range Migration Algorithm, omega-k, Wavenumber Domain Algorithm, Stationary Phase Method. [Abstract] [bibtex-entry]

  13. Alan di Cenzo. A New Look at Nonseparable Synthetic Aperture Radar Processing. IEEE Transactions on Aerospace and Electronic Systems, 24(3):218-223, May 1988. Keyword(s): SAR Processing, Template Correlation, 2D Filter, Nonseparable SAR Processing, Range Migration Algorithm, omega-k, Wavenumber Domain Algorithm. [Abstract] [bibtex-entry]

Conference articles

  1. Kerry E. Dungan, LeRoy A. Gorham, and Linda J. Moore. SAR digital spotlight implementation in MATLAB. In Proc. SPIE, volume 8746, pages 1-11, 2013. Keyword(s): SAR Processing, Azimuth Focusing, Digital Spotlighting, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, MATLAB. [Abstract] [bibtex-entry]

  2. Yuanyuan Wang, Xiao Xiang Zhu, and R. Bamler. Optimal estimation of distributed scatterer phase history parameters from meter-resolution SAR data. In Proc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pages 3468-3471, 2011. [bibtex-entry]

  3. John C. Kirk, Don Woods, and Joe Salzman. Efficient Motion-Tolerant Fopen SAR Processing. In Proc. of EUSAR 2004 - 5th European Conference on Synthetic Aperture Radar, volume 1, Ulm, Germany, pages 179-182, May 2004. Keyword(s): SAR Processing, omega-k, Range Migration Algorithm, Wavenumber Domain Algorithm, Motion Compensation, Thinned Range Migration Algorithm, Airborne SAR. [Abstract] [bibtex-entry]

  4. Mehrdad Soumekh, Steve Worrell, Edward G. Zelnio, and Brett Keaffaber. SAR Wavefront Reconstruction Using Motion Compensated Phase History (Polar Format) Data and DPCA-Based GMTI. In Edmund G. Zelnio, editor, Algorithms for Synthetic Aperture Radar Imagery VII, volume SPIE 4053, pages 64-75, 2000. Keyword(s): SAR Processing, Wavefront Reconstruction, Wavenumber Domain Algorithm, omega-k, Polar Format Algorithm, X-Band, Squinted SAR, Motion Compensation, Monopulse SAR, MTI, GMTI. [Abstract] [bibtex-entry]



Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.

Last modified: Mon Feb 1 16:40:43 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .

This document was translated from BibTEX by bibtex2html