BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'soil'

Thesis

  1. Albert Monteith. Temporal Characteristics of Boreal Forest Radar Measurements. PhD thesis, Chalmers University of Technology, 2020. Keyword(s): SAR Tomography, BorealScat. [Abstract] [bibtex-entry]


Articles in journal or book chapters

  1. Jorge Jorge Ruiz, Risto Vehmas, Juha Lemmetyinen, Josu Uusitalo, Janne Lahtinen, Kari Lehtinen, Anna Kontu, Kimmo Rautiainen, Riku Tarvainen, Jouni Pulliainen, and Jaan Praks. SodSAR: A Tower-Based 1-10 GHz SAR System for Snow, Soil and Vegetation Studies. Sensors, 20(22), 2020. [Abstract] [bibtex-entry]


  2. Mariko S. Burgin, Uday K. Khankhoje, Xueyang Duan, and Mahta Moghaddam. Generalized Terrain Topography in Radar Scattering Models. IEEE Transactions on Geoscience and Remote Sensing, 54(7):3944-3952, July 2016. Keyword(s): terrain mapping, topography (Earth), vegetation, N-layered soil structure, evergreen forest, extended boundary condition method, modular model, multilayered multispecies vegetation model, overlying vegetation, radar scattering models, radar wave interactions, terrain topography, topographic slopes, Backscatter, Radar, Radar scattering, Surface topography, Vegetation mapping, Electromagnetic scattering, modeling, radar terrain factors, remote sensing, vegetation. [Abstract] [bibtex-entry]


  3. Mariko S. Burgin and Jakob J. van Zyl. Analysis of Polarimetric Radar Data and Soil Moisture From Aquarius: Towards a Regression-Based Soil Moisture Estimation Algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(8):3497-3504, August 2016. Keyword(s): Backscatter, Data models, Estimation, L-band, Radar, Soil moisture, Vegetation mapping, Moisture, polarimetric radar, soil, synthetic aperture radar (SAR), time series. [Abstract] [bibtex-entry]


  4. S. K. Chan, R. Bindlish, P. E. O'Neill, E. Njoku, T. Jackson, A. Colliander, F. Chen, Mariko S. Burgin, S. Dunbar, J. Piepmeier, S. Yueh, D. Entekhabi, M. H. Cosh, T. Caldwell, J. Walker, X. Wu, A. Berg, T. Rowlandson, A. Pacheco, H. McNairn, M. Thibeault, J. Martinez-Fernandez, Angel Gonzalez-Zamora, M. Seyfried, D. Bosch, P. Starks, D. Goodrich, J. Prueger, M. Palecki, E. E. Small, M. Zreda, J. C. Calvet, W. T. Crow, and Y. Kerr. Assessment of the SMAP Passive Soil Moisture Product. IEEE Transactions on Geoscience and Remote Sensing, 54(8):4994-5007, August 2016. Keyword(s): hydrological techniques, moisture, remote sensing by radar, soil, L-band radar, L-band radiometer, Level 2 Passive Soil Moisture Product, NASA Distributed Active Archive Center at the National Snow and Ice Data Center, NASA SMAP satellite mission, National Aeronautics and Space Administration, SMAP Passive Soil Moisture product, V-pol Single Channel Algorithm, freeze-thaw state, high-resolution soil moisture global mapping, radar irrecoverable hardware failure, radiometer-only soil moisture product, soil moisture estimates, soil moisture retrievals, Agriculture, Data models, Microwave radiometry, NASA, Soil moisture, Spatial resolution, Brightness temperature, L-band, Level 2 Passive Soil Moisture Product, Level 3 Daily Composite Version, Soil Moisture Active Passive (SMAP), land emission, passive microwave remote sensing, soil moisture, tau-omega model, validation. [Abstract] [bibtex-entry]


  5. S. Zwieback, X. Liu, S. Antonova, B. Heim, A. Bartsch, J. Boike, and I. Hajnsek. A Statistical Test of Phase Closure to Detect Influences on DInSAR Deformation Estimates Besides Displacements and Decorrelation Noise: Two Case Studies in High-Latitude Regions. IEEE_J_GRS, 54(9):5588-5601, September 2016. Keyword(s): atmospheric precipitation, displacement measurement, geophysical techniques, radar interferometry, remote sensing by radar, snow, statistical analysis, synthetic aperture radar, DInSAR deformation estimates, Finland, Ku-band, Lena Delta, Russia, Sodankylä, X-band observations, decorrelation noise, differential interferometric synthetic aperture radar, displacement measurement, high-latitude regions, ice-rich permafrost regions, phase measurement, snow metamorphism, statistical test, summer precipitation event, Decorrelation, Optical interferometry, Scattering, Snow, Synthetic aperture radar, Displacement measurement, interferometry, phase measurement, remote sensing, snow, soil, statistics, synthetic aperture radar. [bibtex-entry]


  6. Yu Morishita and Ramon F. Hanssen. Deformation Parameter Estimation in Low Coherence Areas Using a Multisatellite InSAR Approach. IEEE Trans. Geosci. Remote Sens., 53(8):4275-4283, August 2015. Keyword(s): SAR Processing, persistent scatterer interferometry, PSI, InSAR, DInSAR, Interferometry, Differential Interferometry, decorrelation, deformation, geophysical techniques, least mean squares methods, radar interferometry, remote sensing by radar, soil, synthetic aperture radar, time series, The Netherlands, drained peat soils, least squares method, local subsidence rates, low coherence areas, multisatellite InSAR, pasture periodic signal, peat periodic signal, persistent scatterer interferometry, satellite data, small baseline subset algorithms, statistically homogeneous pixels, surface deformation parameter estimation, Coherence, Decorrelation, Deformable models, Estimation, Satellites, Soil, Synthetic aperture radar, Decorrelation, radar interferometry, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  7. Yu Morishita and Ramon F. Hanssen. Temporal Decorrelation in L-, C-, and X-band Satellite Radar Interferometry for Pasture on Drained Peat Soils. IEEE Trans. Geosci. Remote Sens., 53(2):1096-1104, February 2015. Keyword(s): SAR Processing, Decorrelation, Temporal Decorrelation, geophysical signal processing, land use, radar interferometry, remote sensing by radar, soil, synthetic aperture radar, terrain mapping, vegetation, vegetation mapping, ALOS-2 satellite, Advanced Land Observation Satellite mission, C-band SAR observations, C-band satellite radar interferometry, Envisat mission, European Remote Sensing Satellite mission, L-band SAR observations, L-band satellite radar interferometry, RADARSAT-2 mission, Sentinel-1 satellite, TerraSAR-X mission, X-band SAR observations, X-band satellite radar interferometry, a priori assessment, actual land use, climatological circumstances, coherence estimation window sizes, coherence levels, coherent information, coherent signal, drained peat soils, frequency function, generic models, interferograms, interferometric applications, nonurban areas, optimal data sets, pasture, repeat intervals, repeat orbits, satellite missions, soil types, synthetic aperture radar interferometry, temporal decorrelation model, temporal dynamics, vegetation types, Coherence, Decorrelation. [Abstract] [bibtex-entry]


  8. Alireza Tabatabaeenejad, Mariko S. Burgin, X. Duan, and Mahta Moghaddam. P-Band Radar Retrieval of Subsurface Soil Moisture Profile as a Second-Order Polynomial: First AirMOSS Results. IEEE Transactions on Geoscience and Remote Sensing, 53(2):645-658, February 2015. Keyword(s): hydrological techniques, remote sensing by radar, vegetation, AD 2012 09, AD 2012 10, AirMOSS mission flights, AirMOSS results, Airborne Microwave Observatory of Sub- canopy and Subsurface, Arizona, P-band radar data, Root Mean Squared Error, Walnut Gulch Experimental Watershed, barren terrain, discrete scattering model, radar pixel, second-order polynomial, shrubland terrain, subsurface depth function, subsurface soil moisture profile, synthetic radar data, terrain radar backscattering coefficients, vegetated terrain, Atmospheric modeling, Data models, Moisture, Polynomials, Radar, Soil moisture, Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), discrete scattering model, quadratic function, radar, remote sensing, second-order polynomial, simulated annealing, soil moisture profile. [Abstract] [bibtex-entry]


  9. Uday K. Khankhoje, Mariko S. Burgin, and Mahta Moghaddam. On the Accuracy of Averaging Radar Backscattering Coefficients for Bare Soils Using the Finite-Element Method. IEEE Geoscience and Remote Sensing Letters, 11(8):1345-1349, August 2014. Keyword(s): finite element analysis, geophysical techniques, remote sensing by radar, soil, surface roughness, 2-D finite-element method, Gaussian correlated surfaces, Gaussian correlated surfaces possessing behavior, Gaussian type, assumption validity, average coefficients, averaging assumption, averaging radar backscattering coefficient accuracy, backscatter averaging assumption breaks, backscatter averaging assumption validity conditions, bare rough surface assumption validity, bare soils, constitutive homogeneous pixels, ensemble averaged true coefficient computation, exponential type, exponentially correlated surfaces, heterogeneity impact quantification, heterogeneity source, heterogeneous moisture pixels, heterogeneous pixels, heterogeneous roughness pixels, heterogeneous soil moisture, heterogeneous soil roughness, high-contrast pixels, higher cross-pixel coherent interactions, longest correlation lengths, soil moisture, soil surface roughness, surface correlation type, surface variety computed averages, Backscatter, Correlation, Radar, Rough surfaces, Soil moisture, Surface roughness, Electromagnetic scattering by rough surfaces, finite-element methods (FEMs). [Abstract] [bibtex-entry]


  10. S. B. Kim, Mahta Moghaddam, L. Tsang, Mariko S. Burgin, X. Xu, and E. G. Njoku. Models of L-Band Radar Backscattering Coefficients Over Global Terrain for Soil Moisture Retrieval. IEEE Transactions on Geoscience and Remote Sensing, 52(2):1381-1396, February 2014. Keyword(s): Maxwell equations, permittivity, remote sensing by radar, soil, time series, vegetation mapping, L-band radar backscattering coefficient models, Maxwell equations, RMS height, VWC, accurate soil moisture inversion, airborne data, airborne observation, bare surface, co-pol RMS errors, corn crop, datacube errors, dielectric soil constant, distorted Born approximation framework, double-bounce reflectivity, double-bounce volume-surface interaction, empirical formulae, empirical parameters, fast soil moisture inversion, field-based radar data, global land surface, global terrain, grass fields, in situ observation, independent spaceborne phased array type L-band synthetic aperture radars, input parameters, international geosphere-biosphere programme scheme, land surface class simulation, lookup tables, major crops, mean difference range, numerical solutions, physical model outputs, real-time soil moisture inversion, rice crop, shrub, single scatterer, soil moisture active passive mission data, soil moisture retrieval, soil surface root mean square, sophisticated forward model direct inversion, soybean crop, spaceborne Aquarius scatterometer data, surface scattering, theoretical models. [Abstract] [bibtex-entry]


  11. Silvan Leinss, Giuseppe Parrella, and Irena Hajnsek. Snow height determination by polarimetric phase differences in X-band SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(9):3794-3810, Sept 2014. Keyword(s): hydrological techniques, remote sensing by radar, snow, synthetic aperture radar, AD 2012 01, AD 2012 12 to 2013 04, CPD temporal evolution, Finland, HH polarization, Sodankylae city, TanDEM-X, TanDEM-X acquisitions, TerraSAR-X acquisitions, VV polarization, X-band SAR acquisitions, X-band SAR data, aligned elliptical particles, computer tomography observations, copolar phase difference, fresh snow depth, polarimetric phase difference, snow height determination, snow microstructure, subsequent recrystallization process, temperature-gradient-driven recrystallization process, weather station data, Backscatter, Scattering, Snow, Soil, Soil measurements, Synthetic aperture radar, Temperature measurement, Birefringence, TanDEM-X, TerraSAR-X, VV-HH phase difference, copolar phase difference, dry snow, fresh snow, polarimetry, snow anisotropy, snow microstructure, synthetic aperture radar. [Abstract] [bibtex-entry]


  12. Francesco De Zan, A. Parizzi, Pau Prats-Iraola, and Paco López-Dekker. A SAR Interferometric Model for Soil Moisture. IEEE_J_GRS, 52(1):418-425, January 2014. Keyword(s): dielectric properties, hydrological techniques, radar interferometry, remote sensing by radar, soil, synthetic aperture radar, Born approximation, L-band airborne SAR data, SAR interferometric model, coherence magnitudes, complex interferometric coherences, dielectric properties, geometrical properties, interferogram triplets, phase consistency, plane waves, quantitatively synthetic aperture radar interferometric observables, scattering models, soil moisture, tomography, vertical complex wavenumbers, Coherence, L-band, Moisture, Soil moisture, Synthetic aperture radar, Coherence, soil moisture, synthetic aperture radar (SAR) interferometry. [Abstract] [bibtex-entry]


  13. R. Magagi, A. A. Berg, K. Goita, S. Belair, T. J. Jackson, B. Toth, A. Walker, H. McNairn, P. E. O'Neill, Mahta Moghaddam, I. Gherboudj, A. Colliander, M. H. Cosh, Mariko S. Burgin, J. B. Fisher, S. B. Kim, I. Mladenova, N. Djamai, L. P. B. Rousseau, J. Belanger, J. Shang, and A. Merzouki. Canadian Experiment for Soil Moisture in 2010 (CanEx-SM10): Overview and Preliminary Results. IEEE Transactions on Geoscience and Remote Sensing, 51(1):347-363, January 2013. Keyword(s): land surface temperature, remote sensing, soil, vegetation, AD 2010, AD 2010 05 31 to 2010 06, AMSR-E soil moisture, CanEx-SM10, Canada, Canadian experiment, National Snow and Ice Data Center, SMOS data, SMOS mission, SMOS soil moisture product, Saskatchewan, active microwave measurement, agricultural area, airborne L-band brightness temperatures, airborne L-band radiometer data, airborne platform, boreal forested area, ocean salinity, passive microwave measurement, radio frequency, reflected soil moisture measurements, satellite platform, soil condition, soil ground-based measurements, soil moisture, soil temperature profiles, vegetation characteristics, vegetation condition, Moisture measurement, Satellites, Soil measurements, Soil moisture, Temperature measurement, Vegetation mapping, Agricultural and boreal forested areas, Soil Moisture and Ocean Salinity (SMOS), brightness temperature, soil moisture, validation. [Abstract] [bibtex-entry]


  14. K. Morrison, J. C. Bennett, and M. Nolan. Using DInSAR to Separate Surface and Subsurface Features. IEEE_J_GRS, 51(6):3424-3430, June 2013. Keyword(s): radar imaging, radar interferometry, soil, synthetic aperture radar, C-band VV SAR images, DInSAR scheme, Ground-Based SAR Microwave Measurement Facility, SAR DInSAR, airborne platform, differential interferometric synthetic aperture radar, drying soil, moisture content, phase soil moisture, signal phase record, soil dielectric properties, spaceborne platform, volumetric soil moisture, Radar imaging, Soil measurements, Soil moisture, Spaceborne radar, Synthetic aperture radar, Dielectric materials, ground-penetrating radar, moisture measurement, permittivity measurement, radar imaging, radar signal analysis, radar signature, soil measurements, synthetic aperture imaging, synthetic aperture radar (SAR). [bibtex-entry]


  15. Alireza Tabatabaeenejad, Mariko S. Burgin, and Mahta Moghaddam. Potential of L-Band Radar for Retrieval of Canopy and Subcanopy Parameters of Boreal Forests. IEEE Transactions on Geoscience and Remote Sensing, 50(6):2150-2160, June 2012. Keyword(s): calibration, data analysis, forestry, remote sensing by radar, simulated annealing, soil, vegetation mapping, AD 2010 06, Jet Propulsion Laboratory, L-band radar, National Aeronautics and Space Administration, SMAP mission, Uninhabited Aerial Vehicle Synthetic Aperture Radar, absolute retrieval error analysis, calibration method, canopy parameter retrieval, central Canada boreal forests, discrete scatterer radar model, forest structure, forward scattering model, global optimization scheme, inversion method, old black spruce site, old jack pine forests, optimization algorithm, optimization problem, relative retrieval error, scattering mechanisms, simulated annealing, soil moisture information, subcanopy parameter retrieval, surface soil moisture retrieval, synthetic data, vegetation parameters, young jack pine forests, Backscatter, Dielectric constant, L-band, Radar, Scattering, Soil moisture, Vegetation mapping, Allometric relationships, Canadian Experiment for Soil Moisture in 2010 (CanEx-SM10), L-band radar, Soil Moisture Active and Passive (SMAP), boreal forest, canopy, inverse problem, microwave scattering. [Abstract] [bibtex-entry]


  16. Yajing Yan, M.P. Doin, P. Lopez-Quiroz, F. Tupin, B. Fruneau, V. Pinel, and E. Trouve. Mexico City Subsidence Measured by InSAR Time Series: Joint Analysis Using PS and SBAS Approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(4):1312-1326, August 2012. Keyword(s): AD 2002 11 to 2007 03, ENVISAT images, Gamma-IPTA chain, InSAR time series, Mexico City subsidence rate, adhoc SBAS approach, ground displacement rates, high-pass filtered difference maps, joint analysis method, low-pass filtered difference maps, multitemporal InSAR processing, permanent scatterer approach, small baseline subset approach, subsidence measurement method, subsidence pattern, subsoil compaction analysis, surface drying process, compaction, feature extraction, geophysical image processing, geophysical techniques, high-pass filters, low-pass filters, radar interferometry, soil, synthetic aperture radar, time series;. [Abstract] [bibtex-entry]


  17. Mariko S. Burgin, D. Clewley, R. M. Lucas, and Mahta Moghaddam. A Generalized Radar Backscattering Model Based on Wave Theory for Multilayer Multispecies Vegetation. IEEE Transactions on Geoscience and Remote Sensing, 49(12):4832-4845, December 2011. Keyword(s): backscatter, radar polarimetry, remote sensing by radar, vegetation, AIRSAR data, ALOS PALSAR, Advanced Land Observing Satellite, Airborne Synthetic Aperture Radar data, Australia, NASA JPL, NASA Jet Propulsion Laboratory, Phased Arrayed L-band Synthetic Aperture Radar data, Queensland, distorted Born approximation, generalized radar backscattering model, microwave interaction, multilayer multispecies vegetation, polarimetric radar backscattering coefficients, single species discrete scatterer model, soil moisture, structurally complex vegetation, surface model, surface roughness parameterization, two layer crown trunk models, wave theory, wooded savanna sites, Backscatter, Data models, Mathematical model, Scattering, Synthetic aperture radar, Vegetation, Forest scattering, multispecies vegetation, synthetic aperture radar (SAR) backscattering, wave theory. [Abstract] [bibtex-entry]


  18. B. Rabus, H. Wehn, and M. Nolan. The Importance of Soil Moisture and Soil Structure for InSAR Phase and Backscatter, as Determined by FDTD Modeling. IEEE_J_GRS, 48(5):2421-2429, May 2010. Keyword(s): backscatter, geophysical techniques, radar interferometry, soil, spaceborne radar, surface roughness, synthetic aperture radar, FDTD Modeling, SAR phase, air-filled-void content, backscatter data, backscatter inversions, backscatter responses, bulk moisture content, correlation length, finite-difference time domain, finite-difference time-domain simulator, interferometric phase, mean bulk moisture, microwave backscatter, near-surface soil-structure parameters, phase changes, phase differences, soil structures, spaceborne InSAR techniques, spaceborne interferometric synthetic aperture radar, surface roughness, uniform soil-moisture distributions, vertical moisture gradient, Finite-difference time domain (FDTD), interferometric synthetic aperture radar (InSAR), microwave backscatter, soil moisture, synthetic aperture radar (SAR). [bibtex-entry]


  19. R Tomás, G Herrera, J Delgado, Juan Manuel Lopez-Sanchez, JJ Mallorquì, and J Mulas. A ground subsidence study based on DInSAR data: calibration of soil parameters and subsidence prediction in Murcia City (Spain). Engineering geology, 111(1):19-30, 2010. [bibtex-entry]


  20. Irena Hajnsek, Thomas Jagdhuber, Helmut Schön, and Konstantinos P. Papathanassiou. Potential of Estimating Soil Moisture Under Vegetation Cover by Means of PolSAR. IEEE Transactions on Geoscience and Remote Sensing, 47(2):442-454, Feb. 2009. Keyword(s): SAR Processing, agriculture, crops, moisture, radar polarimetry, remote sensing by radar, soil, synthetic aperture radarAgriSAR campaign, L-band, PolSAR images, PolSAR, agricultural vegetation, canonical scattering components, crop types, dihedral components, polarimetric SAR acquisitions, scattering processes, soil moisture estimation, synthetic aperture radar, vegetation cover, ESAR, Airborne SAR. [Abstract] [bibtex-entry]


  21. Jean-Michel Martinez and Thuy Le Toan. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sensing of Environment, 108(3):209 - 223, 2007. Keyword(s): Wetland, Floodplain, Vegetation, Flood, Temporal dynamic, Radar, Classification. [Abstract] [bibtex-entry]


  22. Thomas L. Ainsworth, Laurent Ferro-Famil, and Jong-Sen Lee. Orientation angle preserving a posteriori polarimetric SAR calibration. IEEE Trans. Geosci. Remote Sens., 44(4):994-1003, April 2006. Keyword(s): SAR Processing, Polarimetry, Polarimetric Calibration, calibration, radar polarimetrybackscatter, calibration, covariance matrices, geophysical techniques, radar polarimetry, remote sensing by radar, synthetic aperture radar, SAR data analysis, a posteriori polarimetric SAR calibration, anechoic chamber data, orientation angle, polarimetric channels, polarimetric covariance matrix, polarimetric distortion, polarimetric fidelity, polarimetric synthetic aperture radar, radar polarimetry, scattering reciprocity, Calibration, Costs, Covariance matrix, Data analysis, Equations, Parameter estimation, Polarimetric synthetic aperture radar, Radar scattering, Soil moisture, Synthetic aperture radar, Calibration, radar polarimetry. [Abstract] [bibtex-entry]


  23. P. M. L. Drezet and S. Quegan. Environmental effects on the interferometric repeat-pass coherence of forests. IEEE_J_GRS, 44(4):825-837, April 2006. Keyword(s): backscatter, dielectric properties, forestry, radiowave interferometry, remote sensing by radar, synthetic aperture radar, vegetation mapping, C-band one-day tandem coherence measurement, SAR, dielectric backscattering coefficient, environmental effects, forest canopy coherence, interferometric repeat-pass coherence, moisture conditions, moisture fluctuations, soil moisture, soil-vegetation-atmosphere transfer model, synthetic aperature radar, vegetation, wind conditions, Backscatter, Coherence, Coupled mode analysis, Dielectric measurements, Fluctuations, Moisture measurement, Predictive models, Satellites, Soil measurements, Wind, Coherence, dielectric, dynamic, forest, multitemporal, synthetic aperature radar (SAR), vegetation. [bibtex-entry]


  24. J.L. Gomez-Dans, S. Quegan, and J.C. Bennett. Indoor C-band polarimetric interferometry observations of a mature wheat canopy. IEEE Trans. Geosci. Remote Sens., 44(4):768-777, April 2006. Keyword(s): SAR Processing, SAR Tomography, Tomography, 2D scan, HH polarization, VH polarization, VV polarization, crop height retrieval, ground-based synthetic aperture radar, incidence angle, indoor C-band polarimetric interferometry observation, polarimetric coherence optimization, polarimetric tomography, polarization synthesis, unconstrained coherence optimization, vegetation monitoring, wheat canopy, crops, radar polarimetry, radiowave interferometry, remote sensing by radar, synthetic aperture radar, vegetation mapping;. [Abstract] [bibtex-entry]


  25. H. C. Stankwitz and S. P. Taylor. Advances in non-linear apodization. IEEE Aerospace and Electronic Systems Magazine, 21(1):3-8, January 2006. Keyword(s): SAR Processing, Apodization, Spatially Variant Apodization, SVA, NonLinear Apodization, European Soil Moisture and Ocean Salinity system, GeoSTAR, Y-type synthetic aperture radiometers, antenna size, bandwidth extrapolation, impulse response performance, irregularly-shaped apertures, microwave radar systems, microwave remote sensing, nonlinear apodization, parse coherent apertures, sidelobe control, sparse aperture filling property, superresolution algorithms, superresolution techniques, synthetic aperture radar systems, synthetic multiple aperture radar technology, microwave measurement, radar antennas, radar resolution, remote sensing by radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  26. M. Nolan and D. R. Fatland. Penetration depth as a DInSAR observable and proxy for soil moisture. IEEE_J_GRS, 41(3):532-537, March 2003. Keyword(s): ground penetrating radar, moisture measurement, radiowave interferometry, remote sensing by radar, soil, synthetic aperture radar, C-band, L-band, X-band, agriculture, attenuation, clay rich soils, clay swelling, deformation signals, differential interferometric synthetic aperture radar, digital elevation models, microwave penetration depth, remote sensing, soil moisture, surface deformation, synthetic aperture radar microwaves, terrain mapping, volumetric water content, Interferometry, L-band, Microwave theory and techniques, Moisture measurement, Radar detection, Remote sensing, Soil measurements, Soil moisture, Surface topography, Synthetic aperture radar. [bibtex-entry]


  27. Didier Massonnet and Kurt L. Feigl. Radar interferometry and its application to changes in the Earth's surface. Reviews of Geophysics, 36(4):441-500, 1998. Keyword(s): Permeability and porosity. [Abstract] [bibtex-entry]


  28. Sasan S. Saatchi, D. M. Le Vine, and R. H. Lang. Microwave backscattering and emission model for grass canopies. IEEE Trans. Geosci. Remote Sens., 32(1):177-186, January 1994. Keyword(s): atmospheric techniques, atmospheric temperature, geophysical techniques, hydrological techniques, radiometry, remote sensing, remote sensing by radar, soil, temperature measurement, 1.4 GHz, 4.75 GHz, C-band, L-band, UHF SHF, distorted Born approximation, elliptical disc, emission model, emissivity, geophysical measurement technique, grass canopies, grassland, hydrology, land surface, microwave backscattering, model, radar cross section, radar remote sensing, soil moisture, thatch layer, vegetation, vegetation canopy, wet Konza prairie, Backscatter, Electromagnetic heating, L-band, Microwave measurements, Microwave radiometry, Moisture measurement, Radar cross section, Radar measurements, Soil measurements, Soil moisture. [Abstract] [bibtex-entry]


Conference articles

  1. O. Ponce, P. Prats, R. Scheiber, A. Reigber, and A. Moreira. First demonstration of 3-D holographic tomography with fully polarimetric multi-circular SAR at L-band. In Proc. IEEE Int. Geoscience and Remote Sensing Symp. - IGARSS, pages 1127-1130, July 2013. Keyword(s): airborne radar, array signal processing, compressed sensing, geophysical image processing, holography, optical focusing, optical tomography, radar imaging, radar polarimetry, radar resolution, synthetic aperture radar, transient response, 3D holographic tomography, 3D polarimetric holographic tomogram, 3D sidelobe reduction, BF, CS, DLR F-SAR airborne system, Earth analysis, IRF, Kaufbeuren Germany, L-band, MCSAR, beamforming, coherent 3D radar backscattering, compressive sensing, dry soil, forested area, fully polarimetric multicircular SAR, ice, impulse response function, multiangular measurement acquisition, synthetic aperture radar, temporal decorrelation, volume scatterer, Apertures, Bandwidth, Image resolution, Imaging, L-band, Synthetic aperture radar, Vegetation, Circular synthetic aperture radar (CSAR), compressive sensing (CS), fast factorized back-projection (FFBP), holographic tomography, polarimetric synthetic aperture radar (PolSAR). [bibtex-entry]


  2. M. Rombach and João Moreira. Description and applications of the multipolarized dual band OrbiSAR-1 InSAR sensor. In Radar Conference, 2003. Proceedings of the International, volume 5, pages 245-250, 2003. Keyword(s): electromagnetic wave reflection, electromagnetic wave scattering, radar polarimetry, remote sensing by radar, Spaceborne SAR, synthetic aperture radar, terrain mapping, topography (Earth), vegetation mapping, OrbiSAR-1 InSAR sensor, area mapping, bald earth height information, biomass, canopy top foliage scattering, digital elevation, forest-classification, ground elevation, interferometric SAR, multipolarized dual band InSAR sensor, permanent cloud covered tropical areas, soil reflection, surface elevation, topographic maps, trunk reflection, vegetation density, vegetation height, vegetation/microwave interaction. [Abstract] [bibtex-entry]


  3. Irena Hajnsek, Konstantinos P. Papathanassiou, Alberto Moreira, and Shane R. Cloude. Surface parameter estimation using interferometric and polarimetric SAR. In Proc. IEEE Int. Geoscience and Remote Sensing Symp, volume 1, pages 420-422 vol.1, 2002. Keyword(s): backscatter, geophysical techniques, hydrological techniques, radar cross-sections, radar polarimetry, radar theory, remote sensing by radar, synthetic aperture radar, terrain mapping, backscatter, geophysical measurement technique, hydrology, interferometric SAR, interferometric coherence, land surface, moisture, polarimetric SAR, radar polarimetry, radar remote sensing, radar scattering, soil moisture, surface parameter estimation, surface roughness, surface scattering model, synthetic aperture radar, terrain mapping, Anisotropic magnetoresistance, Coherence, Decorrelation, Parameter estimation, Polarization, Reflectivity, Rough surfaces, Scattering, Surface roughness, Surface topography. [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:41:12 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html