BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications of Luca Pipia

Articles in journal or book chapters

  1. R. Iglesias, A. Aguasca, X. Fabregas, J. J. Mallorqui, D. Monells, C. Lopez-Martinez, and L. Pipia. Ground-Based Polarimetric SAR Interferometry for the Monitoring of Terrain Displacement Phenomena - Part I: Theoretical Description. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3):980-993, March 2015. Keyword(s): geomorphology, radar interferometry, remote sensing by radar, synthetic aperture radar, terrain mapping, GB-InSAR techniques, GB-SAR sensors, PSI processing chains, PSI techniques, PolInSAR algorithms, PolSAR measurements, SLFMCW GB-SAR system, SLFMCW signals, Universitat Politecnica de Catalunya, acquisition time, classical single-polarimetric performances, coherent pixels technique, ground displacement episodes, ground displacement phenomena, ground-based SAR interferometry, ground-based polarimetric SAR interferometry, ground-based synthetic aperture radar, persistent scatterer interferomerty, polarimetric RiskSAR sensor, polarimetric SAR measurements, stepped linear frequency modulated continuous wave, terrain displacement phenomena monitoring, troposphere medium decorrelation, troposphere temporal homogeneity, vector network analyzers, Atmospheric measurements, Interferometry, Monitoring, Sensor phenomena and characterization, Synthetic aperture radar, Differential synthetic aperture radar (SAR) interferometry (DInSAR), GB-SAR interferometry (GB-InSAR), frequency modulated continuous wave (FMCW) radar, ground-based SAR (GB-SAR), persistent scatterer interferomerty (PSI), polarimetric SAR interferometry (PolInSAR), stepped linear FMCW (SLFMCW) radar. [Abstract] [bibtex-entry]


  2. R. Iglesias, A. Aguasca, X. Fabregas, J. J. Mallorqui, D. Monells, C. López-Martìnez, and L. Pipia. Ground-Based Polarimetric SAR Interferometry for the Monitoring of Terrain Displacement Phenomena --Part II: Applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3):994-1007, March 2015. Keyword(s): geomorphology, geophysical techniques, radar interferometry, remote sensing by radar, synthetic aperture radar, Andorran Pyrenees, El Forn de Canillo, GB-InSAR techniques, GB-SAR sensors, Remote Sensing Laboratory, RiskSAR sensor, Spain, Universitat Politecnica de Catalunya, X-band, cost-effective solution, ground displacement phenomena, ground-based polarimetric SAR interferometry, ground-based synthetic aperture radar interferometry, in-field data, infrastructure safety, landslide monitoring, people safety, terrain displacement phenomena monitoring, urban landslides, urban subsidence, urban subsidence monitoring, zero-baseline configuration, Coherence, Interferometry, Monitoring, Sensitivity, Synthetic aperture radar, Terrain factors, Vectors, Differential synthetic aperture radar (SAR) interferometry (DInSAR), displacement monitoring, frequency modulated continuous wave (FMCW) radar, ground-based SAR (GB-SAR), ground-based SAR interferometry (GBInSAR), persistent scatterer interferometry (PSI), polarimetric SAR interferometry (PolInSAR), steepest linear frequency modulated continuous wave (SLFMCW) radar. [bibtex-entry]


  3. Luca Pipia, Xavier Fabregas, Albert Aguasca, and Carlos Lopez-Martinez. Polarimetric Temporal Analysis of Urban Environments With a Ground-Based SAR. IEEE Trans. Geosci. Remote Sens., 51(4):2343-2360, 2013. Keyword(s): SAR Processing, Ground-based SAR, GBSAR, DInSAR, Differential SAR Interferometry, X-Band, Time series, Polarimetry, SAR Polarimetry, Backscatter, Geologic measurements, Monitoring, Scattering, Stability analysis, Synthetic aperture radar, Urban areas, Ground-based synthetic aperture radar (gbSAR) systems, polarimetric entropy, radar polarimetry. [Abstract] [bibtex-entry]


  4. G. Margarit, J. J. Mallorqui, and L. Pipia. Polarimetric Characterization and Temporal Stability Analysis of Urban Target Scattering. IEEE_J_GRS, 48(4):2038-2048, April 2010. Keyword(s): geophysical image processing, radar polarimetry, synthetic aperture radar, vegetation mapping, GRaphical Electromagnetic Computing SAR data, RADARSAT-2, TerraSAR-X, geometrical configuration, geometry-scattering, high resolution images, land classification, nonprobabilistic models, polarimetric capabilities, polarimetric characterization, polarimetric-dispersion properties, quasideterministic scattering behavior, synthetic aperture radar images, temporal stability analysis, urban target scattering, urban-image postprocessing, Analytical models, Computational modeling, Electromagnetic modeling, Electromagnetic scattering, Geometry, Image analysis, Radar scattering, Solid modeling, Stability analysis, Synthetic aperture radar, Polarimetry, synthetic aperture radar (SAR) simulation, urban scattering. [bibtex-entry]


  5. Luca Pipia, Xavier Fabregas, Albert Aguasca, Carlos Lopez-Martinez, Sergi Duque, Jordi J. Mallorqui, and Jordi Marturia. Polarimetric Differential SAR Interferometry: First Results With Ground-Based Measurements. IEEE Geosci. Remote Sens. Lett., 6(1):167-171, January 2009. Keyword(s): SAR Processing, GBSAR, Ground-based SAR, deformation monitoring, geomorphology, geophysical signal processing, radar interferometry, radar polarimetry, remote sensing by radar, synthetic aperture radar, topography (Earth), AD 2006 06 to 2007 03, PolSAR, Remote Sensing Laboratory, Sallent, Universitat Politecnica de Catalunya, coherent pixels technique, ground-based synthetic aperture radar sensor, high-quality deformation maps, northeastern Spain, polarimetric differential SAR interferometry, subsidence information, troposphere changes, zero-baseline polarimetric SAR, Ground-based synthetic aperture radar (GBSAR) sensor, SAR differential interferometry (DInSAR), SAR polarimetry. [Abstract] [bibtex-entry]


  6. L. Pipia, X. Fabregas, A. Aguasca, and C. Lopez-Martinez. Atmospheric Artifact Compensation in Ground-Based DInSAR Applications. IEEE Geosci. Remote Sens. Lett., 5(1):88-92, January 2008. Keyword(s): GB-SAR, ground-based SAR, terrestrial SAR, atmospheric humidity, atmospheric pressure, atmospheric techniques, atmospheric temperature, radar interferometry, synthetic aperture radar, AD 2005 06, Barcelona, Collserola Park, Spain, Universitat Politecnica de Catalunya, atmosphere variations, atmospheric artifact compensation, coherence-based technique, differential interferometry Synthetic Aperture Radar, ground-Based DInSAR applications, heterogeneous environment, interferometric information, polarimetric measurements, Atmosphere, Atmospheric measurements, Atmospheric modeling, Information retrieval, Interferometry, Layout, Sensor phenomena and characterization, Sensor systems, Synthetic aperture radar, Testing, Differential interferometric SAR (DInSAR), GB-SAR sensor, polarimetric SAR (PolSAR), synthetic aperture radar (SAR). [bibtex-entry]


Conference articles

  1. L. Pipia, X. Fabregas, A. Aguasca, C. López-Martìnez, and J. J. Mallorquì. Polarimetric coherence optimization for interferometric differential applications. In Proc. IEEE Int. Geoscience and Remote Sensing Symp, volume 5, pages 146-149, July 2009. Keyword(s): GB-SAR, ground-based SAR, terrestrial SAR, data acquisition, optimisation, radar interferometry, radar polarimetry, DInSAR, X-band ground-based PolSAR acquisitions, deformation phase information, differential interferometric SAR, interferometric differential applications, optimized differential phase, polarimetric coherence optimization, polarimetric coherence-optimization techniques, synthetic PolSAR data, urban environment, zero-baseline fully-polarimetric data sets, Amplitude estimation, Analytical models, Convergence, Deformable models, Information retrieval, Interferometry, Optimization methods, Remote sensing, Scattering, Synthetic aperture radar, PolInSAR. [bibtex-entry]


  2. L. Pipia, X. Fabregas, A. Aguasca, C. Lopez-Martinez, J. J. Mallorqui, and O. Moraline. Polarimetric temporal information for urban deformation map retrieval. In Proc. IEEE Int. Geoscience and Remote Sensing Symp, pages 192-195, July 2007. Keyword(s): GB-SAR, ground-based SAR, terrestrial SAR, radar interferometry, radar polarimetry, synthetic aperture radar, town and country planning, PolSAR, Salient village, UPC RSLab, X-Band ground- based SAR sensor, differential interferometric applications, full scattering matrix, polarimetric persistent scatterers, polarimetric temporal information, urban deformation map retrieval, Fasteners, Geometry, Information retrieval, Interferometry, Laboratories, Polarization, Remote monitoring, Remote sensing, Scattering, Sensor phenomena and characterization. [bibtex-entry]


  3. L. Pipia, A. Aguasca, X. Fabregas, J. J. Mallorqui, and C. Lopez-Martinez. Temporal decorrelation in polarimetric differential interferometry using a ground-based SAR sensor. In Proc. IEEE Int. Geoscience and Remote Sensing Symp. IGARSS '05, volume 6, pages 4108-4111, July 2005. Keyword(s): GB-SAR, ground-based SAR, terrestrial SAR, Azimuth, Decorrelation, Temporal Decorrelation, Interferometry, Monitoring, Polarization, Satellites, Semiconductor device measurement, Testing, Urban areas, Vegetation. [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:22:27 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html