BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications of Martin Schneebeli

Articles in journal or book chapters

  1. J. Lemmetyinen, A. Kontu, J. Pulliainen, J. Vehviläinen, K. Rautiainen, A. Wiesmann, C. Mätzler, C. Werner, H. Rott, T. Nagler, M. Schneebeli, M. Proksch, D. Schüttemeyer, M. Kern, and M. W. J. Davidson. Nordic Snow Radar Experiment. Geoscientific Instrumentation, Methods and Data Systems, 5(2):403-415, 2016. [bibtex-entry]


  2. C. Lin, B. Rommen, N. Floury, D. Schüttemeyer, M. W. J. Davidson, M. Kern, A. Kontu, J. Lemmetyinen, J. Pulliainen, A. Wiesmann, C. L. Werner, C. Mätzler, M. Schneebeli, M. Proksch, and T. Nagler. Active Microwave Scattering Signature of Snowpack---Continuous Multiyear SnowScat Observation Experiments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(8):3849-3869, August 2016. Keyword(s): remote sensing by radar, snow, snowpack active microwave scattering signature, multiyear SnowScat observation experiment, European Space Agency SnowScat instrument, aperture scatterometer, gamma remote sensing AG, AD 2009 02, Weissfluhjoch, Davos, Switzerland, alpine snowpack, snowpack physical characterization, Sodankyla, Finland, AD 2009 11, Finnish Meteorological Institute, Lapland, passive microwave observation, winter season, time-domain snow profiling experiment, snow microstructure, snow metamorphism, snow depth, snow-water-equivalent, frequency 9.15 GHz to 17.9 GHz, Snow, Instruments, Microstructure, Spaceborne radar, Backscatter, Microwave radiometry, Microwave backscatter, radar remote sensing, scatterometer, snow microstructure, snowpack, snow-water-equivalent (SWE), time-domain profiling. [Abstract] [bibtex-entry]


  3. Martin Proksch, Nick Rutter, Charles Fierz, and Martin Schneebeli. Intercomparison of snow density measurements: bias, precision, and vertical resolution. The Cryosphere, 10(1):371-384, 2016. Keyword(s): Snow characterisation, snow density, density cutter, snow density retrieval, comparison of methods. [Abstract] [bibtex-entry]


  4. Martin Proksch, Henning Löwe, and Martin Schneebeli. Density, specific surface area, and correlation length of snow measured by high-resolution penetrometry. J. Geophys. Res. Earth Surf., pp 346-362, 2015. Keyword(s): Snow characterisation, correlation length, snow density, specific surface area, SSA, Snow Micro Pen, SMP, micro-CT, Statistical model, Statistical model relating micro-CT structure to SMP force for many snow data, snow density retrieval, and SSA in the field, Efficient retrieval of spatial variability and 2-D stratigraphy of snow, 2-D stratigraphy of snow. [Abstract] [bibtex-entry]


  5. Christine Pielmeier and Martin Schneebeli. Developments in the Stratigraphy of Snow. Surveys in Geophysics, 24(5-6):389-416, 2003. Keyword(s): Snow, Snow Stratigraphy, mechanical properties, physical properties, profile, snow cover, snow properties. [Abstract] [bibtex-entry]


  6. Martin Schneebeli and Jerome B. Johnson. A constant-speed penetrometer for high-resolution snow stratigraphy. Annals of Glaciology, 26:107-111, 1998. Keyword(s): snow, snow micro pen, snow stratigraphy. [Abstract] [bibtex-entry]


Conference articles

  1. Andreas Wiesmann, Rafael Caduff, Charles L. Werner, Othmar Frey, Martin Schneebeli, Henning Löwe, Matthias Jaggi, Mike Schwank, Reza Naderpour, and Thorsten Fehr. ESA Snowlab Project: 4 Years of Wide Band Scatterometer Measurements of Seasonal Snow. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 5745-5748, 2019. Keyword(s): ESA Snowlab, SnowScat, Wideband Scatterometer, WBScat, snow, microwave scatterometer, aperture synthesis, time series, polarimetry, tomography, SAR tomography. [Abstract] [bibtex-entry]


  2. Othmar Frey, Charles L. Werner, Martin Schneebeli, Amy Macfarlane, and Andreas Wiesmann. Enhancement of SnowScat for tomographic observation capabilities. In Proc. FRINGE 2015, ESA SP-731, March 2015. Keyword(s): SAR Processing, SAR Tomography, Snow, Snowpack, X-band, Ku-band, SnowScat, ESA, European Space Agency. [Abstract] [bibtex-entry]


  3. Charles L. Werner, Andreas Wiesmann, Tazio Strozzi, Martin Schneebeli, and Christian Matzler. The SnowScat ground-based polarimetric scatterometer: Calibration and initial measurements from Davos Switzerland. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 2363-2366, July 2010. Keyword(s): SnowScat, KuScat, calibration, geophysical equipment, radar polarimetry, snow, COld REgions Hydrology High-resolution Observatory Mission, Davos Switzerland, Ku-Band, SNOWSCAT ground-based polarimetric scatterometer, SnowScat, VH polarization, VV polarization, X-Band, calibration, dry snow, dual frequency radar, ground-based coherent polarimetric scatterometer, snow water equivalent retrieval algorithms, Antenna measurements, Antennas, Calibration, Frequency measurement, Instruments, Radar measurements, Snow. [Abstract] [bibtex-entry]


  4. Andreas Wiesmann, Charles L. Werner, Tazio Strozzi, Christian Matzler, Thomas Nagler, Helmut Rott, Martin Schneebeli, and Urs Wegmuller. SnowScat, X- to Ku-Band Scatterometer Development. In Proc. ESA Living Planet Symposium, June 2010. Keyword(s): SnowScat, KuScat, backscatter, hydrological techniques, radiometry, remote sensing by radar, snow, spaceborne radar, C-band SAR satellite systems, ESA CoRe-H2O mission, Ku-band scatterometer, Swiss Alps, X-band scatterometer, backscatter information, backscattering signal, dry snow cover, dual frequency radar, frequency 18 GHz, frequency 9 GHz, mobile scatterometer, snow coverage, snow liquid water content, snow structure, spaceborne active microwave remote sensing, Backscatter, Frequency, Ground support, Radar measurements, Remote sensing, Satellites, Signal generators, Snow, Spaceborne radar, Water storage, Scatterometer, Snow, backscatter, snow grain. [Abstract] [bibtex-entry]


  5. Andreas Wiesmann, Charles L. Werner, Christian Matzler, Martin Schneebeli, Tazio Strozzi, and Urs Wegmuller. Mobile X- to Ku-band Scatterometer in Support of the CoRe-H2O Mission. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 5, pages 244-247, July 2008. Keyword(s): SnowScat, KuScat, backscatter, hydrological techniques, radiometry, remote sensing by radar, snow, spaceborne radar, C-band SAR satellite systems, ESA CoRe-H2O mission, Ku-band scatterometer, Swiss Alps, X-band scatterometer, backscatter information, backscattering signal, dry snow cover, dual frequency radar, frequency 18 GHz, frequency 9 GHz, mobile scatterometer, snow coverage, snow liquid water content, snow structure, spaceborne active microwave remote sensing, Backscatter, Frequency, Ground support, Radar measurements, Remote sensing, Satellites, Signal generators, Snow, Spaceborne radar, Water storage, Scatterometer, Snow, backscatter, snow grain. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:22:27 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html