BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'scatterometer'

Articles in journal or book chapters

  1. Reza Naderpour, Mike Schwank, Derek Houtz, Charles Werner, and Christian Mätzler. Wideband Backscattering From Alpine Snow Cover: A Full-Season Study. IEEE Transactions on Geoscience and Remote Sensing, 60(4302215):1-15, 2022. Keyword(s): Radar, remote sensing, snow, WBSCAT, wide-band scatterometer, ESA SnowLab. [Abstract] [bibtex-entry]


  2. M. Santoro, O. Cartus, U. Wegmüller, S. Besnard, N. Carvalhais, A. Araza, M. Herold, J. Liang, J. Cavlovic, and M.E. Engdahl. Global estimation of above-ground biomass from spaceborne C-band scatterometer observations aided by LiDAR metrics of vegetation structure. Remote Sensing of Environment, 279(113114), 2022. [bibtex-entry]


  3. Jorge Jorge Ruiz, Risto Vehmas, Juha Lemmetyinen, Josu Uusitalo, Janne Lahtinen, Kari Lehtinen, Anna Kontu, Kimmo Rautiainen, Riku Tarvainen, Jouni Pulliainen, and Jaan Praks. SodSAR: A Tower-Based 1-10 GHz SAR System for Snow, Soil and Vegetation Studies. Sensors, 20(22), 2020. [Abstract] [bibtex-entry]


  4. J. Matar, M. Rodriguez-Cassola, G. Krieger, P. Lopez-Dekker, and A. Moreira. MEO SAR: System Concepts and Analysis. IEEE Transactions on Geoscience and Remote Sensing, 58(2):1313-1324, February 2020. Keyword(s): Orbits, Sensitivity, Synthetic aperture radar, Antennas, Spatial resolution, Low earth orbit satellites, Coverage, medium-Earth-orbit (MEO) synthetic aperture radar (SAR), orbits, SAR, space radiation, system performance.. [Abstract] [bibtex-entry]


  5. Aaron Thompson, Richard Kelly, and Joshua King. Sensitivity of Ku- and X-Band Radar Observations to Seasonal Snow in Ontario, Canada. Canadian Journal of Remote Sensing, 45(6):829-846, 2019. Keyword(s): Microwave remote sensing, radar, radar remote sensing, Snow, Snow Water Equivalent (SWE), remote sensing of snow, seasonal snow, Ku-band, X-band. [Abstract] [bibtex-entry]


  6. Albert R. Monteith and Lars M. H. Ulander. Temporal Survey of P- and L-Band Polarimetric Backscatter in Boreal Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10):3564-3577, October 2018. Keyword(s): SAR Tomography, backscatter, radar imaging, radar polarimetry, remote sensing by radar, spaceborne radar, synthetic aperture radar, vegetation mapping, temporal survey, L-band polarimetric backscatter, boreal forests, environmental conditions, seasonal variations, backscattered radar signal, biomass retrieval scheme, synthetic aperture radar data, electromagnetic scattering mechanisms, biomass estimation algorithms, L-band SAR missions, temporal changes, HV-polarized P, L-band radar backscatter, boreal forest site, environmental parameters, mature Norway spruce, above-ground biomass, approximately 250 tons/ha, BorealScat tower-based scatterometer, L-band backscatter, HH/VV backscatter ratio, average backscatter, double-bounce scattering, severe temporal decorrelation, P-band temporal coherence, mass 250.0 ton, time 5.0 min, noise figure 4.0 dB to 10.0 dB, Synthetic aperture radar, L-band, Backscatter, Biomass, Antenna arrays, Coherence, Backscatter, boreal forest, L-band, P-band, synthetic aperture radar (SAR), temporal coherence, time series. [Abstract] [bibtex-entry]


  7. C. Lin, B. Rommen, N. Floury, D. Schüttemeyer, M. W. J. Davidson, M. Kern, A. Kontu, J. Lemmetyinen, J. Pulliainen, A. Wiesmann, C. L. Werner, C. Mätzler, M. Schneebeli, M. Proksch, and T. Nagler. Active Microwave Scattering Signature of Snowpack---Continuous Multiyear SnowScat Observation Experiments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(8):3849-3869, August 2016. Keyword(s): remote sensing by radar, snow, snowpack active microwave scattering signature, multiyear SnowScat observation experiment, European Space Agency SnowScat instrument, aperture scatterometer, gamma remote sensing AG, AD 2009 02, Weissfluhjoch, Davos, Switzerland, alpine snowpack, snowpack physical characterization, Sodankyla, Finland, AD 2009 11, Finnish Meteorological Institute, Lapland, passive microwave observation, winter season, time-domain snow profiling experiment, snow microstructure, snow metamorphism, snow depth, snow-water-equivalent, frequency 9.15 GHz to 17.9 GHz, Snow, Instruments, Microstructure, Spaceborne radar, Backscatter, Microwave radiometry, Microwave backscatter, radar remote sensing, scatterometer, snow microstructure, snowpack, snow-water-equivalent (SWE), time-domain profiling. [Abstract] [bibtex-entry]


  8. S. B. Kim, Mahta Moghaddam, L. Tsang, Mariko S. Burgin, X. Xu, and E. G. Njoku. Models of L-Band Radar Backscattering Coefficients Over Global Terrain for Soil Moisture Retrieval. IEEE Transactions on Geoscience and Remote Sensing, 52(2):1381-1396, February 2014. Keyword(s): Maxwell equations, permittivity, remote sensing by radar, soil, time series, vegetation mapping, L-band radar backscattering coefficient models, Maxwell equations, RMS height, VWC, accurate soil moisture inversion, airborne data, airborne observation, bare surface, co-pol RMS errors, corn crop, datacube errors, dielectric soil constant, distorted Born approximation framework, double-bounce reflectivity, double-bounce volume-surface interaction, empirical formulae, empirical parameters, fast soil moisture inversion, field-based radar data, global land surface, global terrain, grass fields, in situ observation, independent spaceborne phased array type L-band synthetic aperture radars, input parameters, international geosphere-biosphere programme scheme, land surface class simulation, lookup tables, major crops, mean difference range, numerical solutions, physical model outputs, real-time soil moisture inversion, rice crop, shrub, single scatterer, soil moisture active passive mission data, soil moisture retrieval, soil surface root mean square, sophisticated forward model direct inversion, soybean crop, spaceborne Aquarius scatterometer data, surface scattering, theoretical models. [Abstract] [bibtex-entry]


  9. J.M.L. King, R. Kelly, A. Kasurak, C. Duguay, G. Gunn, and J.B. Mead. UW-Scat: A Ground-Based Dual-Frequency Scatterometer for Observation of Snow Properties. IEEE Geosci. Remote Sens. Lett., 10(3):528-532, May 2013. Keyword(s): geophysical equipment, snow, AD 2009 to 2011, Canada, Canadian Subarctic, Churchill, UW-Scat scatterometer, University of Waterloo scatterometer, angular width, azimuth user-programmable range, elevation angle, frequency 17.2 GHz, frequency 9.6 GHz, frequency-modulated continuous-wave radars, ground-based dual-frequency scatterometer, harsh environmental conditions, ice property observation, radar beam, snow property observation, terrestrial snow, two-axis positioning system, Backscatter, Calibration, Ice, Radar measurements, Radio frequency, Snow, Spaceborne radar, Radar polarimetry, scatterometer, snow. [Abstract] [bibtex-entry]


  10. Simon H. Yueh, Steve J. Dinardo, Ahmed Akgiray, Richard West, Donald W. Cline, and Kelly Elder. Airborne Ku-Band Polarimetric Radar Remote Sensing of Terrestrial Snow Cover. IEEE Transactions on Geoscience and Remote Sensing, 47(10):3347-3364, October 2009. Keyword(s): snow, ku-band, airborne radar, backscatter, hydrological techniques, ice, radar cross-sections, radar polarimetry, remote sensing by radar, snow, vegetation, AD 2006 to 2008, CLPX-II, Cold Land Processes Experiment, Colorado, HH/VV backscatter ratio, Ku-band polarimetric scatterometer, POLSCAT data acquisition, USA, airborne Ku-band polarimetric radar, biomass, freeze-thaw cycles, ice crust layers, ice lenses, radar echoes, radar signals, radiative transfer scattering model, remote sensing, snow-grain size, snow-water-equivalent accumulation, snowpack change, surface hoar growth, terrestrial snow cover, vegetation types, Microwave remote sensing, radar, snow. [Abstract] [bibtex-entry]


  11. Tazio Strozzi and Christian Matzler. Backscattering measurements of alpine snowcovers at 5.3 and 35 GHz. IEEE Transactions on Geoscience and Remote Sensing, 36(3):838-848, May 1998. Keyword(s): backscatter, hydrological techniques, radar cross-sections, radar polarimetry, remote sensing by radar, snow, 35 GHz, 5.3 GHz, AD 1993, AD 1994, AD 1995, AD 1996, Austria, Austrian Alp, C-band, EHF, Ka-band, SHF, Switzerland, hydrology, measurement technique, network-analyzer based scatterometer, radar backscatter, radar polarimetry, radar remote sensing, radar scattering, refrozen crust thickness, snow cover, snowcover, volumetric liquid water content, Backscatter, Frequency, Instruments, Millimeter wave measurements, Performance evaluation, Physics, Polarization, Radar measurements, Snow, Testing. [Abstract] [bibtex-entry]


  12. Sasan S. Saatchi, D. M. Le Vine, and R. H. Lang. Microwave backscattering and emission model for grass canopies. IEEE Trans. Geosci. Remote Sens., 32(1):177-186, January 1994. Keyword(s): atmospheric techniques, atmospheric temperature, geophysical techniques, hydrological techniques, radiometry, remote sensing, remote sensing by radar, soil, temperature measurement, 1.4 GHz, 4.75 GHz, C-band, L-band, UHF SHF, distorted Born approximation, elliptical disc, emission model, emissivity, geophysical measurement technique, grass canopies, grassland, hydrology, land surface, microwave backscattering, model, radar cross section, radar remote sensing, soil moisture, thatch layer, vegetation, vegetation canopy, wet Konza prairie, Backscatter, Electromagnetic heating, L-band, Microwave measurements, Microwave radiometry, Moisture measurement, Radar cross section, Radar measurements, Soil measurements, Soil moisture. [Abstract] [bibtex-entry]


Conference articles

  1. Marcel Stefko, Othmar Frey, Charles Werner, and Irena Hajnsek. KAPRI: a Bistatic Full-Polarimetric Interferometric Real-Aperture Radar System for Monitoring of Natural Environments. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 1950-1953, 2021. IEEE. Keyword(s): SAR Processing, WBSCAT, Wide-band Scatterometer, ESA, European Space Agency, Snow, ESA Snowlab, Wideband Scatterometer, WBScat, microwave scatterometer, aperture synthesis, time series, polarimetry, tomography, SAR tomography. [bibtex-entry]


  2. Charles Werner, Othmar Frey, Reza Naderpour, Andreas Wiesmann, Martin Süss, and Urs Wegmuller. Aperture Synthesis and Calibration of the WBSCAT Ground-Based Scatterometer. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 1947-1950, 2021. IEEE. Keyword(s): SAR Processing, WBSCAT, Wide-band Scatterometer, ESA, European Space Agency, Snow, ESA Snowlab, Wideband Scatterometer, WBScat, microwave scatterometer, aperture synthesis, time series, polarimetry, tomography, SAR tomography. [bibtex-entry]


  3. Charles L. Werner, Martin Suess, Othmar Frey, and Andreas Wiesmann. The ESA Wideband Microwave Scatterometer (WBSCAT): Design and Implementation. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 8339-8342, 2019. Keyword(s): ESA Snowlab, SnowScat, Wideband Scatterometer, WBScat, snow, microwave scatterometer, aperture synthesis, time series, polarimetry, tomography, SAR tomography. [Abstract] [bibtex-entry]


  4. Andreas Wiesmann, Rafael Caduff, Charles L. Werner, Othmar Frey, Martin Schneebeli, Henning Löwe, Matthias Jaggi, Mike Schwank, Reza Naderpour, and Thorsten Fehr. ESA Snowlab Project: 4 Years of Wide Band Scatterometer Measurements of Seasonal Snow. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 5745-5748, 2019. Keyword(s): ESA Snowlab, SnowScat, Wideband Scatterometer, WBScat, snow, microwave scatterometer, aperture synthesis, time series, polarimetry, tomography, SAR tomography. [Abstract] [bibtex-entry]


  5. Othmar Frey, Charles L. Werner, Rafael Caduff, and Andreas Wiesmann. Tomographic profiling with SnowScat within the ESA SnowLab Campaign: Time Series of Snow Profiles Over Three Snow Seasons. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 6512-6515, 2018. Keyword(s): SAR Processing, SAR Tomography, Tomographic profiling, SnowScat, ESA, European Space Agency, X-Band, Ku-Band, Polarimetry, ground-based radar, Snow, Snowpack, geophysical signal processing, radar polarimetry, synthetic aperture radar. [Abstract] [bibtex-entry]


  6. Othmar Frey, Charles L. Werner, Rafael Caduff, and Andreas Wiesmann. Inversion of Snow Structure Parameters from Time Series of Tomographic Measurements With SnowScat. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 2472-2475, 2017. Keyword(s): SAR Processing, SAR Tomography, Tomographic profiling, SnowScat, ESA, European Space Agency, X-Band, Ku-Band, Polarimetry, ground-based radar, Snow, Snowpack, geophysical signal processing, radar polarimetry, synthetic aperture radar, SWE, Snow Water Equivalent, Autofocus, Time-Domain Back-Projection, TDBP, Backprojection. [Abstract] [bibtex-entry]


  7. Othmar Frey, Charles L. Werner, Rafael Caduff, and Andreas Wiesmann. A time series of SAR tomographic profiles of a snowpack. In Proc. of EUSAR 2016, pages 726-730, June 2016. Keyword(s): SAR Processing, SAR Tomography, Tomographic profiling, SnowScat, ESA, European Space Agency, X-Band, Ku-Band, Polarimetry, ground-based radar, Snow, Snowpack, geophysical signal processing, radar polarimetry, synthetic aperture radar. [Abstract] [bibtex-entry]


  8. Othmar Frey, Charles L. Werner, Rafael Caduff, and Andreas Wiesmann. A time series of tomographic profiles of a snow pack measured with SnowScat at X-/Ku-Band. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 1, pages 17-20, July 2016. Keyword(s): SAR Processing, SAR Tomography, Tomographic profiling, SnowScat, ESA, European Space Agency, X-Band, Ku-Band, Polarimetry, ground-based radar, Snow, Snowpack, geophysical signal processing, radar polarimetry, synthetic aperture radar. [Abstract] [bibtex-entry]


  9. Othmar Frey, Charles L. Werner, Martin Schneebeli, Amy Macfarlane, and Andreas Wiesmann. Enhancement of SnowScat for tomographic observation capabilities. In Proc. FRINGE 2015, ESA SP-731, March 2015. Keyword(s): SAR Processing, SAR Tomography, Snow, Snowpack, X-band, Ku-band, SnowScat, ESA, European Space Agency. [Abstract] [bibtex-entry]


  10. Othmar Frey, Charles L. Werner, and Andreas Wiesmann. SnowScat tomography: first experimental results. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 1, pages 1-4, July 2015. Note: Abstract.Keyword(s): SAR Processing, SAR Tomography, Tomographic profiling, SnowScat, ESA, European Space Agency, X-Band, Ku-Band, Polarimetry, ground-based radar, Snow, Snowpack, geophysical signal processing, radar polarimetry, synthetic aperture radar. [Abstract] [bibtex-entry]


  11. Othmar Frey, Charles L. Werner, and Andreas Wiesmann. Tomographic Profiling of the Structure of a Snow Pack at X-/Ku-Band Using SnowScat in SAR Mode. In Proc. EuRAD 2015 - 12th European Radar Conference, pages 21-24, September 2015. Keyword(s): SAR Processing, SAR Tomography, Tomographic profiling, SnowScat, ESA, European Space Agency, X-Band, Ku-Band, Polarimetry, ground-based radar, Snow, Snowpack, geophysical signal processing, radar polarimetry, synthetic aperture radar. [Abstract] [bibtex-entry]


  12. Charles L. Werner, Andreas Wiesmann, Tazio Strozzi, Martin Schneebeli, and Christian Matzler. The SnowScat ground-based polarimetric scatterometer: Calibration and initial measurements from Davos Switzerland. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 2363-2366, July 2010. Keyword(s): SnowScat, KuScat, calibration, geophysical equipment, radar polarimetry, snow, COld REgions Hydrology High-resolution Observatory Mission, Davos Switzerland, Ku-Band, SNOWSCAT ground-based polarimetric scatterometer, SnowScat, VH polarization, VV polarization, X-Band, calibration, dry snow, dual frequency radar, ground-based coherent polarimetric scatterometer, snow water equivalent retrieval algorithms, Antenna measurements, Antennas, Calibration, Frequency measurement, Instruments, Radar measurements, Snow. [Abstract] [bibtex-entry]


  13. Andreas Wiesmann, Charles L. Werner, Tazio Strozzi, Christian Matzler, Thomas Nagler, Helmut Rott, Martin Schneebeli, and Urs Wegmuller. SnowScat, X- to Ku-Band Scatterometer Development. In Proc. ESA Living Planet Symposium, June 2010. Keyword(s): SnowScat, KuScat, backscatter, hydrological techniques, radiometry, remote sensing by radar, snow, spaceborne radar, C-band SAR satellite systems, ESA CoRe-H2O mission, Ku-band scatterometer, Swiss Alps, X-band scatterometer, backscatter information, backscattering signal, dry snow cover, dual frequency radar, frequency 18 GHz, frequency 9 GHz, mobile scatterometer, snow coverage, snow liquid water content, snow structure, spaceborne active microwave remote sensing, Backscatter, Frequency, Ground support, Radar measurements, Remote sensing, Satellites, Signal generators, Snow, Spaceborne radar, Water storage, Scatterometer, Snow, backscatter, snow grain. [Abstract] [bibtex-entry]


  14. Andreas Wiesmann, Charles L. Werner, Christian Matzler, Martin Schneebeli, Tazio Strozzi, and Urs Wegmuller. Mobile X- to Ku-band Scatterometer in Support of the CoRe-H2O Mission. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 5, pages 244-247, July 2008. Keyword(s): SnowScat, KuScat, backscatter, hydrological techniques, radiometry, remote sensing by radar, snow, spaceborne radar, C-band SAR satellite systems, ESA CoRe-H2O mission, Ku-band scatterometer, Swiss Alps, X-band scatterometer, backscatter information, backscattering signal, dry snow cover, dual frequency radar, frequency 18 GHz, frequency 9 GHz, mobile scatterometer, snow coverage, snow liquid water content, snow structure, spaceborne active microwave remote sensing, Backscatter, Frequency, Ground support, Radar measurements, Remote sensing, Satellites, Signal generators, Snow, Spaceborne radar, Water storage, Scatterometer, Snow, backscatter, snow grain. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:24:52 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html