BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'above-ground biomass'

Articles in journal or book chapters

  1. A. Araza, S. de Bruin, M. Herold, S. Quegan, N. Labriere, P. Rodriguez-Veiga, V. Avitabile, M. Santoro, E.T.A. Mitchard, C.M. Ryan, O.L. Phillips, S. Willcock, H. Verbeeck, J. Carreiras, L. Hein, M.-J. Schelhaas, A.M. Pacheco-Pascagaza, P. da Conceicao Bispo, G.V. Laurin, G. Vieilledent, F. Slik, A. Wijaya, S.L. Lewis, A. Morel, J. Liang, H. Sukhdeo, D. Schepaschenko, J. Cavlovic, H. Gilani, and R. Lucas. A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sensing of Environment, 272(112917), 2022. [bibtex-entry]


  2. O. Cartus, M. Santoro, U. Wegmuller, N. Labriere, and J. Chave. Sentinel-1 Coherence for Mapping Above-Ground Biomass in Semiarid Forest Areas. IEEE Geoscience and Remote Sensing Letters, 19, 2022. [bibtex-entry]


  3. M. Santoro, O. Cartus, U. Wegmüller, S. Besnard, N. Carvalhais, A. Araza, M. Herold, J. Liang, J. Cavlovic, and M.E. Engdahl. Global estimation of above-ground biomass from spaceborne C-band scatterometer observations aided by LiDAR metrics of vegetation structure. Remote Sensing of Environment, 279(113114), 2022. [bibtex-entry]


  4. Unmesh Khati, Marco Lavalle, and Gulab Singh. Spaceborne tomography of multi-species Indian tropical forests. Remote Sensing of Environment, 229:193-212, 2019. Keyword(s): SAR Processing, SAR Tomography, TomoSAR, Tomography, TanDEM-X, TerraSAR-X, Tropical, Forest, India, Spaceborne SAR, X-band. [Abstract] [bibtex-entry]


  5. Albert R. Monteith and Lars M. H. Ulander. Temporal Survey of P- and L-Band Polarimetric Backscatter in Boreal Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10):3564-3577, October 2018. Keyword(s): SAR Tomography, backscatter, radar imaging, radar polarimetry, remote sensing by radar, spaceborne radar, synthetic aperture radar, vegetation mapping, temporal survey, L-band polarimetric backscatter, boreal forests, environmental conditions, seasonal variations, backscattered radar signal, biomass retrieval scheme, synthetic aperture radar data, electromagnetic scattering mechanisms, biomass estimation algorithms, L-band SAR missions, temporal changes, HV-polarized P, L-band radar backscatter, boreal forest site, environmental parameters, mature Norway spruce, above-ground biomass, approximately 250 tons/ha, BorealScat tower-based scatterometer, L-band backscatter, HH/VV backscatter ratio, average backscatter, double-bounce scattering, severe temporal decorrelation, P-band temporal coherence, mass 250.0 ton, time 5.0 min, noise figure 4.0 dB to 10.0 dB, Synthetic aperture radar, L-band, Backscatter, Biomass, Antenna arrays, Coherence, Backscatter, boreal forest, L-band, P-band, synthetic aperture radar (SAR), temporal coherence, time series. [Abstract] [bibtex-entry]


  6. Astor T. Caicoya, Matteo Pardini, Irena Hajnsek, and Konstantinos P. Papathanassiou. Forest Above-Ground Biomass Estimation From Vertical Reflectivity Profiles at L-Band. IEEE Geosci. Remote Sens. Lett., 12(12):2379-2383, December 2015. Keyword(s): SAR Processing, SAR Tomography, L-band, Capon, forestry, vegetation mapping, L-band reflectivity profiles, SAR tomography, forest above-ground biomass estimation, forest stand densities, height measurements, root-mean-square error, vertical forest structure information, vertical radar reflectivity profiles, vertical reflectivity profiles, Biomass, Estimation, Image color analysis, L-band, Remote sensing, Synthetic aperture radar, Forest allometry, L-band, forest biomass, synthetic aperture radar (SAR) tomography, vertical forest structure, vertical reflectivity profiles. [Abstract] [bibtex-entry]


  7. Scott Hensley, S. Oveisgharan, S. Saatchi, M. Simard, R. Ahmed, and Z. Haddad. An Error Model for Biomass Estimates Derived From Polarimetric Radar Backscatter. IEEE_J_GRS, 52(7):4065-4082, July 2014. Keyword(s): air pollution, carbon capture and storage, remote sensing by radar, vegetation, above ground biomass, basic imaging physics, biomass estimation accuracy, carbon flux measurement, carbon storage, disturbance quantification, ecosystem processes, error model, forest carbon inventories, forested areas, ground carbon, instrument parameter, mission parameter, notional Earth observing mission, polarimetric radar backscatter, radar polarimetric measurements, regrowth quantification, remote sensing measurements, Backscatter, Biological system modeling, Biomass, Radar measurements, Radar polarimetry, Signal to noise ratio, Backscatter error model, forest biomass, polarimetry, synthetic aperture radar (SAR). [bibtex-entry]


  8. M. C. Dobson, F. T. Ulaby, T. LeToan, A. Beaudoin, E. S. Kasischke, and N. Christensen. Dependence of radar backscatter on coniferous forest biomass. IEEE Trans. Geosci. Remote Sens., 30(2):412-415, March 1992. Keyword(s): SAR Processing, Forest, Forest parameters, biomass, C-band, Duke, France, L-band, Landes, North Carolina, P-band, SAR data, United States, age, coniferous forest biomass, maritime pines, plantations, radar backscatter, remote sensing, backscatter, ecology, forestry, remote sensing by radar. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:22:30 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html