BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'error model'

Articles in journal or book chapters

  1. Timothy M. Marston and Daniel S. Plotnick. Semiparametric Statistical Stripmap Synthetic Aperture Autofocusing. IEEE Transactions on Geoscience and Remote Sensing, 53(4):2086-2095, April 2015. Keyword(s): SAR Processing, Autofocus, Motion Compensation, MoComp, geophysical image processing, remote sensing by radar, synthetic aperture radar, synthetic aperture sonar, SAR literature, artificially injected crabbing error, artificially injected sway error, corrupting phase function, cost function gradient, metric-maximizing solutions, semiparametric statistical stripmap synthetic aperture autofocusing, spotlight-mode SAR applications, stripmap error model, stripmap gradient expression, stripmap imagery, synthetic aperture sonar literature, to statistical quality metric, unmanned-underwater-vehicle-mounted sonar system, widebeam wideband rail-based system, Apertures, Arrays, Computational modeling, Focusing, Measurement, Synthetic aperture sonar, Synthetic aperture sonar (SAS) radar autofocus stripmap. [Abstract] [bibtex-entry]


  2. Scott Hensley, S. Oveisgharan, S. Saatchi, M. Simard, R. Ahmed, and Z. Haddad. An Error Model for Biomass Estimates Derived From Polarimetric Radar Backscatter. IEEE_J_GRS, 52(7):4065-4082, July 2014. Keyword(s): air pollution, carbon capture and storage, remote sensing by radar, vegetation, above ground biomass, basic imaging physics, biomass estimation accuracy, carbon flux measurement, carbon storage, disturbance quantification, ecosystem processes, error model, forest carbon inventories, forested areas, ground carbon, instrument parameter, mission parameter, notional Earth observing mission, polarimetric radar backscatter, radar polarimetric measurements, regrowth quantification, remote sensing measurements, Backscatter, Biological system modeling, Biomass, Radar measurements, Radar polarimetry, Signal to noise ratio, Backscatter error model, forest biomass, polarimetry, synthetic aperture radar (SAR). [bibtex-entry]


  3. Robert Wang, Otmar Loffeld, Holger Nies, Stefan Knedlik, and Joachim H. G. Ender. Chirp-Scaling Algorithm for Bistatic SAR Data in the Constant-Offset Configuration. IEEE Transactions on Geoscience and Remote Sensing, 47(3):952 -964, March 2009. Keyword(s): SAR Processing, Chirp Scaling Algorithm, CSA, Bistatic SAR, Doppler phase parameters, Loffeld bistatic formula, SAR receiver velocity vector, SAR transmitter velocity vector, azimuth invariant configuration, azimuth stationary configuration, bistatic SAR data processing method, bistatic deformation term linearisation, bistatic motion error model, bistatic slant range displacement, constant offset configuration, monostatic motion compensation technique, quasimonostatic term linearisation, trajectory deviation compensation, zero Doppler plane, Doppler radar, chirp modulation, geophysical signal processing, Motion Compensation, MoComp, radar receivers, radar signal processing, radar transmitters, remote sensing by radar, synthetic aperture radar, Extended Chirp Scaling, ECS. [Abstract] [bibtex-entry]


  4. R. Wang, O. Loffeld, H. Nies, S. Knedlik, and J. Ender. Chirp-Scaling Algorithm for Bistatic SAR Data in the Constant-Offset Configuration. IEEE Trans. Geosci. Remote Sens., 47(3):952-964, March 2009. Keyword(s): SAR Processing, Bistatic SAR, Chirp Scaling Algorithm, ECS, CSA processor, Doppler phase parameters, Loffeld bistatic formula, SAR receiver velocity vector, SAR transmitter velocity vector, azimuth invariant configuration, azimuth stationary configuration, bistatic SAR data processing method, bistatic deformation term linearisation, bistatic motion error model, bistatic slant range displacement, chirp scaling algorithm, constant offset configuration, monostatic motion compensation technique, quasimonostatic term linearisation, trajectory deviation compensattion, zero Doppler plane, Doppler radar, chirp modulation, geophysical signal processing, motion compensation, radar receivers, radar signal processing, radar transmitters, remote sensing by radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  5. C. Y. Chang and John C. Curlander. Application of the Multiple PRF Technique to Resolve Doppler Centroid Estimation Ambiguity for Spaceborne SAR. IEEE Transactions on Geoscience and Remote Sensing, 30(5):941-949, September 1992. Keyword(s): SAR Processing, Doppler Centroid, Doppler Centroid Estimation, Multiple PRF Technique, Range Cross-Correlation Technique, Clutterlock, SIR-C. [Abstract] [bibtex-entry]


  6. Fuk K. Li and R. M. Goldstein. Studies of Multibaseline Spaceborne Interferometric Synthetic Aperture Radars. IEEE Transactions on Geoscience and Remote Sensing, 28(1):88-97, January 1990. Keyword(s): SAR Processing, SAR Interferometry, Interferometry, InSAR, Multi-Baseline SAR, SAR Tomography, geophysical techniques, radar applications, radar measurement, radiowave interferometry, remote sensing, topography (Earth)INSAR design, Seasat, baseline separations, geophysical technique, multibaseline spaceborne interferometric synthetic aperture radars, performance, phase measurement error model, remote sensing, signal-to-noise ratios, topography measurement capability. [Abstract] [bibtex-entry]


Conference articles

  1. Guoyongmei, Chenhao, Hongwen, and Maoshiyi. Resample in the first order motion compensation of real-time SAR processor. In 5th International Conference on Signal Processing Proceedings, 2000. WCCC-ICSP 2000, volume 3, pages 1830-1833, 2000. Keyword(s): SAR Processsing, Airborne SAR, Motion Compensation, MoComp, airborne radar, error compensation, image sampling, motion compensation, radar imaging, real-time systems, synthetic aperture radarSAR image, airborne radar, azimuth focus, first order motion compensation, image defocus, image distortion, motion error model, phase errors, real-time SAR processor, resample problem, signal amplitude, synthetic aperture radar. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:39:43 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html