BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about '65'

Articles in journal or book chapters

  1. Maciej J. Soja, H.J. Persson, and Lars M.H. Ulander. Estimation of Forest Biomass From Two-Level Model Inversion of Single-Pass InSAR Data. IEEE Trans. Geosci. Remote Sens., 53(9):5083-5099, September 2015. Keyword(s): data acquisition, digital elevation models, forestry, radar interferometry, remote sensing by radar, synthetic aperture radar, vegetation, AD 2008, AD 2010, AD 2011, AD 2012, AD 2013, InSAR processing, Krycklan feature, Remningstorp feature, Swedish test site, VV-polarized TanDEM-X acquisition, aboveground biomass estimation, biomass predictor, canopy density, digital terrain model, forest biomass estimation, forest height, hemiboreal forest, northern Sweden, single-pass InSAR data, single-pass interferometric synthetic aperture radar data, southern Sweden, two-level model inversion, Biological system modeling, Biomass, Computational modeling, Correlation, Decorrelation, Estimation, Synthetic aperture radar, Aboveground biomass (AGB), TanDEM-X (TDM), canopy density, forest height, interferometric model, interferometric syntheticaperture radar (InSAR), two-level model (TLM). [Abstract] [bibtex-entry]


  2. Silvan Leinss, Giuseppe Parrella, and Irena Hajnsek. Snow height determination by polarimetric phase differences in X-band SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(9):3794-3810, Sept 2014. Keyword(s): hydrological techniques, remote sensing by radar, snow, synthetic aperture radar, AD 2012 01, AD 2012 12 to 2013 04, CPD temporal evolution, Finland, HH polarization, Sodankylae city, TanDEM-X, TanDEM-X acquisitions, TerraSAR-X acquisitions, VV polarization, X-band SAR acquisitions, X-band SAR data, aligned elliptical particles, computer tomography observations, copolar phase difference, fresh snow depth, polarimetric phase difference, snow height determination, snow microstructure, subsequent recrystallization process, temperature-gradient-driven recrystallization process, weather station data, Backscatter, Scattering, Snow, Soil, Soil measurements, Synthetic aperture radar, Temperature measurement, Birefringence, TanDEM-X, TerraSAR-X, VV-HH phase difference, copolar phase difference, dry snow, fresh snow, polarimetry, snow anisotropy, snow microstructure, synthetic aperture radar. [Abstract] [bibtex-entry]


  3. B. Minchew, C.E. Jones, and B. Holt. Polarimetric Analysis of Backscatter From the Deepwater Horizon Oil Spill Using L-Band Synthetic Aperture Radar. Geoscience and Remote Sensing, IEEE Transactions on, 50(10):3812-3830, October 2012. Keyword(s): AD 2010 06 23, Bragg scattering mechanism, DWH slick, Gulf of Mexico, L-band synthetic aperture radar, backscatter polarimetric analysis, coherency matrix eigenvalue, deepwater horizon, deepwater horizon oil spill, dielectric constant, entropy parameters, fully-polarimetric uninhabited aerial vehicle, ocean wave spectral components, oil slick, oil volumetric concentration, radar backscatter, sea water, slick detection method, substantial variation parameter, surface scattering analysis, synthetic aperture radar data, backscatter, eigenvalues and eigenfunctions, entropy, marine pollution, matrix algebra, ocean chemistry, ocean waves, oceanographic regions, oceanographic techniques, permittivity, radar interferometry, remote sensing by radar, seawater, synthetic aperture radar;. [Abstract] [bibtex-entry]


  4. G. Luzi, M. Pieraccini, D. Mecatti, L. Noferini, G. Guidi, F. Moia, and C. Atzeni. Ground-based radar interferometry for landslides monitoring: atmospheric and instrumental decorrelation sources on experimental data. IEEE Trans. Geosci. Remote Sens., 42(11):2454-2466, November 2004. Keyword(s): Decorrelation, Temporal Decorrelation, Adaptive optics, Decorrelation, Image analysis, Instruments, Monitoring, Optical distortion, Optical interferometry, Radar interferometry, Synthetic aperture radar, Terrain factors, data acquisition, decorrelation, geomorphology, geophysical signal processing, radar imaging, radiowave interferometry, remote sensing by radar, synthetic aperture radar, terrain mapping, topography (Earth), 5.725 GHz, AD 2002, C-band ground-based equipment, Civita di Bagnoregio, Italy, SAR image acquisition, ancient town, atmospheric decorrelation sources, coherent synthetic aperture radar, geometric distortion, ground-based radar interferometry, instrumental decorrelation sources, interferometric data, landslide monitoring, mechanical stability, optical photogrammetry, spatial decorrelation, temporal decorrelation, terrain movements, 65, Decorrelation, SAR, differential interferometry, ground-based synthetic aperture radar, phase stability, synthetic aperture radar;. [Abstract] [bibtex-entry]


Conference articles

  1. R. Rincon, B. Osmanoglu, P. Racette, Q. Bonds, M. Perrine, L. Brucker, S. Seufert, and C. Kielbasa. Tri-Frequency Synthetic Aperture Radar for the Measurements of Snow Water Equivalent. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 8653-8655, July 2019. Keyword(s): airborne radar, hydrological equipment, hydrological techniques, radiometers, snow, synthetic aperture radar, airborne synthetic aperture radar system, snow water equivalent, SWE, radiometer, active passive microwave system, frequency bands, successful system performance, tri-frequency synthetic aperture radar, SWESARR instrument, dual polarization radar, AD 2019 11, frequency 9.65 GHz, frequency 13.6 GHz, frequency 200.0 MHz, frequency 17.25 GHz, Snow, Spaceborne radar, Radar antennas, Synthetic aperture radar, Instruments, Microwave radiometry, Snow, SAR, SWE. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:39:04 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html