BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about '94 GHz'

Articles in journal or book chapters

  1. Angel Ribalta. Time-Domain Reconstruction Algorithms for FMCW-SAR. IEEE Geosci. Remote Sens. Lett., 8(3):396-400, May 2011. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, frequency-modulated continuous-wave, Ka-band, SAR, airborne SAR, FMCW, COBRA, Fraunhofer, FGAN, X-Band, W-Band, 10 GHz, 35 GHz, 94 GH, 220 GHz, 4 GHz Bandwidth at 35 and 94 GHz, 8 GHz Bandwidth at 220 GHz. [Abstract] [bibtex-entry]


  2. Christian Matzler and Andreas Wiesmann. Extension of the Microwave Emission Model of Layered Snowpacks to Coarse-Grained Snow. Remote Sensing of Environment, 70(3):317-325, December 1999. Keyword(s): MEMLS, Snow, Microwave, Microwave emission model of lalayer snowpacks, Dielectric Properties of Dry Snow, relative permittivity, snow density. [Abstract] [bibtex-entry]


  3. Andreas Wiesmann, Christian Matzler, and Thomas Weise. Radiometric and structural measurements of snow samples. Radio Science, 33(2):273-289, 1998. [Abstract] [bibtex-entry]


Conference articles

  1. I. Walterscheid, P. Berens, M. Caris, S. Sieger, O. Saalmann, D. Janssen, G. El-Arnauti, A. Ribalta, D. Henke, and E. M. Dominguez. First results of a joint measurement campaign with PAMIR-Ka and MIRANDA-94. In 2020 IEEE Radar Conference (RadarConf20), pages 1-6, September 2020. Keyword(s): Radar, Radar imaging, Synthetic aperture radar, Radar polarimetry, Aircraft, Bandwidth, Radar antennas, Multi-dimensional radar imaging, Synthetic Aperture Radar, SAR, Multi-look SAR, Multi-aspect SAR, Polarimetric SAR, PAMIR-Ka, MIRANDA-94. [Abstract] [bibtex-entry]


  2. A. Martinez, M. Lort, A. Aguasca, and A. Broquetas. Submillimetric motion detection with a 94 GHZ ground based synthetic aperture radar. In IET International Radar Conference 2015, pages 1-5, October 2015. Keyword(s): SAR Processing, W-Band, CW radar, FM radar, motion compensation, radar imaging, radar interferometry, synthetic aperture radar, CW-FM radar, W band, frequency 94 GHz, ground based synthetic aperture radar, high resolution imaging, radar interferometry, submillimetric motion detection, Band, CW-FM Radar, Ground Based SAR. [Abstract] [bibtex-entry]


  3. H. Essen, W. Johannes, S. Stanko, R. Sommer, A. Wahlen, and J. Wilcke. High resolution W-band UAV SAR. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 5033-5036, July 2012. Keyword(s): SAR Processing, W-Band, SUMATRA, Airborne SAR, UAV, Fraunhofer, geophysical equipment, remote sensing by radar, synthetic aperture radar, FM-CW principle, MIRANDA, SAR imaging, W-band UAV SAR, average transmit power, fibre optic gyroscope, frequency 94 GHz, high quality SAR processing, miniaturised millimetre wave radar, ordinary analogue data link, quick-look processing, real-time SAR-focusing algorithm, synthetic aperture radar, unmanned helicopter, Bandwidth, Chirp, Radar antennas, Real-time systems, Sensors, Synthetic aperture radar, High Resolution, Synthetic Aperture Radar, UAV, mm- waves. [Abstract] [bibtex-entry]


  4. H. Essen, S. Stanko, R. Sommer, W. Johannes, A. Wahlen, J. Wilcke, and S. Hantscher. Millimetre wave SAR for UAV operation. In Proc. Asia-Pacific Microwave Conference, pages 963-966, December 2011. Keyword(s): SAR Processing, W-Band, SUMATRA, Airborne SAR, UAV, Fraunhofer, CW radar, FM radar, Global Positioning System, airborne radar, autonomous aerial vehicles, high electron mobility transistors, millimetre wave amplifiers, millimetre wave field effect transistors, millimetre wave radar, synthetic aperture radar, Fraunhofer spin-off, UAV operation, W-band, advanced front-end technique, environmental monitoring, frequency 94 GHz, highly miniaturized FM-CW radar, low noise HEMT amplifiers, military reconnaissance, millimetre wave SAR system, millimetre wave technology, miniaturized radars, off-the-shelf GPS, sensor package, small airborne sensing aircraft, synthetic aperture radar, transmission equipment, Aircraft, Bandwidth, Chirp, Radar imaging, Sensors, Synthetic aperture radar, FM-CW waveform, UAV, millimetre waves, synthetic aperture radar. [Abstract] [bibtex-entry]


  5. S. Hantscher, S. Lang, M. Hägelen, and H. Essen. 94 GHz person scanner with circular aperture as part of a new sensor concept on airports. In International Radar Symposium, pages 1-4, June 2010. Keyword(s): SAR Processing, W-Band, Fraunhofer, Airports, Apertures, Radar imaging, Radar tracking, Security, Synthetic aperture radar, Airport security, Radar, Synthetic Aperture Radar. [Abstract] [bibtex-entry]


  6. H. Essen, M. Bräutigam, R. Sommer, A. Wahlen, W. Johannes, J. Wilcke, M. Schlechtweg, and A. Tessmann. SUMATRA, a W-band SAR for UAV application. In 2009 International Radar Conference Surveillance for a Safer World (RADAR 2009), pages 1-4, October 2009. Keyword(s): SAR Processing, W-Band, SUMATRA, Airborne SAR, UAV, Fraunhofer, airborne radar, aircraft, millimetre wave radar, remotely operated vehicles, synthetic aperture radar, HEMT amplifiers, IF amplifiers, LNA, SUMATRA-94, UAV application, data transmission equipment, frequency 94 GHz, miniaturized GPS, mixer, remotely piloted aircraft, synthetic aperture unmanned millimeterwave airborne test radar, w-band SAR, Airborne radar, Aircraft, Data communication, Global Positioning System, HEMTs, Hardware, Low-noise amplifiers, Power system modeling, Remote sensing, Unmanned aerial vehicles, HEMTAmplifiers, Millimeterwaves, SAR, UAV. [Abstract] [bibtex-entry]


  7. H. Essen, H. H. Fuchs, and A. Pagels. High resolution millimeterwave SAR for the remote sensing of wave patterns. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 963-966, July 2007. Keyword(s): SAR Processing, W-Band, airborne radar, clutter, ocean waves, oceanographic equipment, radar polarimetry, remote sensing by radar, sea level, statistical analysis, synthetic aperture radar, Ka-band clutter statistics, MEMPHIS, Multi-frequency Experimental Monopulse High-resolution Interferometric SAR, W-band clutter statistics, frequency 35 GHz, frequency 94 GHz, high resolution millimeterwave SAR, high resolution ocean swell imaging, nonimaging statistical methods, polarimetric millimetric SAR, south Spanish Atlantic coast, synthetic aperture radar, wave pattern remote sensing, Bandwidth, Chirp, Frequency, High-resolution imaging, Polarization, Radar imaging, Remote sensing, Sea measurements, Sea surface, Synthetic aperture radar, K-distribution wave pattern, Millimetre waves, SAR, polarimetry, resolution. [Abstract] [bibtex-entry]


  8. C. Neumann, G. Weiss, A. Wahlen, and T. Brehm. Ground surveillance with mmW radar for border control and camp protection applications. In Proc. European Microwave Conference, pages 700-703, October 2007. Keyword(s): SAR Processing, W-Band, Airborne SAR, UAV, Fraunhofer, military radar, search radar, terrorism, automatic detection, automatic recognition, border control, camp protection application, ground surveillance, light weight miniature sensors, millimetre wave region, mmW radar, moving hostile objects, peace enforcing missions, peacekeeping missions, portable 35-GHz radar, terrorism, Bandwidth, Costs, Meteorological radar, Protection, Radar applications, Radar clutter, Signal resolution, Snow, Surveillance, Terrorism. [Abstract] [bibtex-entry]


  9. G. Connan, H. D. Griffiths, P. V. Brennan, and R. Garello. W-band radar measurements of laboratory water waves. In OCEANS '99 MTS/IEEE. Riding the Crest into the 21st Century, volume 3, pages 1333-1337 vol.3, 1999. Keyword(s): SAR Processing, W-Band, backscatter, ocean waves, oceanographic techniques, radar cross-sections, remote sensing by radar, synthetic aperture radar, 75 to 110 GHz, 94 GHz, EHF, FMCW radar, SAR, W-band, backscattering, internal wave, measurement technique, millimetre wave radar, ocean wave, radar remote sensing, radar scattering, synthetic aperture radar, wave-tank experiment, Chirp modulation, Frequency modulation, Laboratories, Radar antennas, Radar imaging, Radar measurements, Sea surface, Signal resolution, Surface waves, Synthetic aperture radar. [Abstract] [bibtex-entry]


  10. G. Connan, H. D. Griffiths, and P. V. Brennan. FMCW-SAR development for internal wave imaging. In OCEANS '97. MTS/IEEE Conference Proceedings, volume 1, pages 73-78 vol.1, October 1997. Keyword(s): SAR Processing, W-Band, CW radar, FM radar, electromagnetic wave scattering, oceanographic equipment, oceanographic techniques, radar cross-sections, radar equipment, radar imaging, radar polarimetry, remote sensing by radar, synthetic aperture radar, 94 GHz, EHF, FMCW radar, MORSE, Mesoscale Ocean Radar Signature Experiments, SAR, W-band, internal wave, measurement technique, millimetre wave radar, millimetric radar, mm wave, model, ocean dynamics, radar imaging, radar polarimetry, radar remote sensing, synthetic aperture imaging, synthetic aperture radar, ultra-high-resolution SAR, Azimuth, Hydrodynamics, Laboratories, Laser radar, Radar antennas, Radar imaging, Sea surface, Spaceborne radar, Surface topography, Surface waves. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:39:04 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html