BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'eigendecomposition'

Articles in journal or book chapters

  1. Homa Ansari, Francesco De Zan, and Richard Bamler. Efficient Phase Estimation for Interferogram Stacks. IEEE Transactions on Geoscience and Remote Sensing, 56(7):4109-4125, July 2018. Keyword(s): maximum likelihood estimation, phase estimation, radar interferometry, remote sensing by radar, synthetic aperture radar, terrain mapping, time series, efficient phase estimation, interferogram stacks, signal decorrelation, SAR interferometry, high-precision deformation, different techniques, short baseline subset, SqueeSAR, CAESAR, overarching schemes, different analysis approaches, deformation estimation, called Eigendecomposition, maximum-likelihood-estimator, Interferometric phase, state-of-the-art techniques, computational estimation efficiency, Sequential Estimator, efficient processing scheme, state-of-the-art approaches, Electromagnetic interference, Time series analysis, Maximum likelihood estimation, Systematics, Synthetic aperture radar, Strain, Big Data, coherence matrix, covariance estimation, differential interferometric synthetic aperture radar, distributed scatterers (DS), efficiency, error analysis, maximum-likelihood estimation, near real-time (NRT) processing. [Abstract] [bibtex-entry]


  2. Ning Cao, Hyongki Lee, and H. C. Jung. A Phase-Decomposition-Based PSInSAR Processing Method. IEEE Transactions on Geoscience and Remote Sensing, 54(2):1074-1090, February 2016. Keyword(s): radar interferometry, synthetic aperture radar, coherence, distributed scatterer, eigendecomposition, measurement points, multiple scattering mechanisms, persistent scatterer network density, phase-decomposition-based persistent scatterer InSAR method, spatial density, Coherence, Covariance matrices, Decision support systems, Eigenvalues and eigenfunctions, Synthetic aperture radar, Urban areas, Differential interferometric synthetic aperture radar (DInSAR), distributed scatterer (DS) interferometry, persistent scatterer (PS) interferometry (PSI), synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  3. Ning Cao, Hyongki Lee, and H. C. Jung. Mathematical Framework for Phase-Triangulation Algorithms in Distributed-Scatterer Interferometry. IEEE Geoscience and Remote Sensing Letters, 12(9):1838-1842, Sept 2015. Keyword(s): geophysical techniques, mathematical analysis, maximum likelihood estimation, phase estimation, radar interferometry, DS interferometry procedure, coherence-weighted PT, distributed-scatterer interferometry, eigendecomposition-based phase estimator, equal-weighted PT, estimation procedure weight value, least square estimator, mathematical framework, mathematical relation analysis, maximum-likelihood phase estimator, modified PT algorithm, persistent-scatterer interferometry measurement point, phase-triangulation algorithm, published PT method, Coherence, Covariance matrices, Interferometry, Maximum likelihood estimation, Remote sensing, Synthetic aperture radar, Differential interferometric synthetic aperture radar (DInSAR), distributed scatterer (DS) interferometry, persistent scatterer (PS) interferometry (PSI), phase triangulation (PT), synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:23:13 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html