Publications about 'Maximum likelihood estimation'

Articles in journal or book chapters

  1. Homa Ansari, Francesco De Zan, and Richard Bamler. Efficient Phase Estimation for Interferogram Stacks. IEEE Transactions on Geoscience and Remote Sensing, 56(7):4109-4125, July 2018. Keyword(s): maximum likelihood estimation, phase estimation, radar interferometry, remote sensing by radar, synthetic aperture radar, terrain mapping, time series, efficient phase estimation, interferogram stacks, signal decorrelation, SAR interferometry, high-precision deformation, different techniques, short baseline subset, SqueeSAR, CAESAR, overarching schemes, different analysis approaches, deformation estimation, called Eigendecomposition, maximum-likelihood-estimator, Interferometric phase, state-of-the-art techniques, computational estimation efficiency, Sequential Estimator, efficient processing scheme, state-of-the-art approaches, Electromagnetic interference, Time series analysis, Maximum likelihood estimation, Systematics, Synthetic aperture radar, Strain, Big Data, coherence matrix, covariance estimation, differential interferometric synthetic aperture radar, distributed scatterers (DS), efficiency, error analysis, maximum-likelihood estimation, near real-time (NRT) processing. [Abstract] [bibtex-entry]

  2. Homa Ansari, Francesco De Zan, and Richard Bamler. Sequential Estimator: Toward Efficient InSAR Time Series Analysis. IEEE Transactions on Geoscience and Remote Sensing, 55(10):5637-5652, October 2017. Keyword(s): SAR Processing, SAR Interferometry, InSAR, differential SAR interferometry, D-InSAR, covariance matrices, data compression, image coding, radar imaging, radar interferometry, synthetic aperture radar, time series, Big Data, InSAR time series analysis, compressed data batch artificial interferograms, data batch compression, data covariance matrix analysis, data reduction, high-precision near-real-time processing, interferometric phase estimation, recursive estimation, sequential estimator, virtual image estimator, wide-swath synthetic aperture radar mission, Coherence, Earth, Maximum likelihood estimation, Monitoring, Synthetic aperture radar, Time series analysis, Big Data, coherence estimation error, data compression, differential interferometric synthetic aperture radar (DInSAR), distributed scatterers, efficiency, error analysis, low-rank approximation, maximum-likelihood estimation (MLE). [Abstract] [bibtex-entry]

  3. Christophe Magnard, Max Frioud, David Small, Thorsten Brehm, and Erich Meier. Analysis of a Maximum Likelihood Phase Estimation Method for Airborne Multibaseline SAR Interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(3):1072-1085, March 2016. Keyword(s): SAR Processing, SAR Interferometry, InSAR, Multibaseline Interferometry, Ka-band, Airborne SAR, Single-pass Multibaseline Interferometry, airborne radar, image texture, maximum likelihood estimation, millimetre wave radar, motion compensation, phase estimation, radar imaging, radar interferometry, synthetic aperture radar, C2F algorithm, ML method, airborne multibaseline SAR interferometry, calibration steps, coarse-to-fine algorithm, cross-track multibaseline synthetic aperture radar interferometric data, experimental Ka-band multibaseline system, homogeneous texture, imperfect motion compensation, maximum likelihood phase estimation method, noise level, Antenna measurements, Antennas, Calibration, Maximum likelihood estimation, Motion compensation, Phase estimation, Synthetic aperture radar, Interferometry, Ka-band, maximum likelihood (ML), millimeter wave radar, millimeterwave experimental multifrequency polarimetric high-resolution interferometric system (MEMPHIS), multibaseline, phase unwrapping, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]

  4. Ning Cao, Hyongki Lee, and H. C. Jung. Mathematical Framework for Phase-Triangulation Algorithms in Distributed-Scatterer Interferometry. IEEE Geoscience and Remote Sensing Letters, 12(9):1838-1842, Sept 2015. Keyword(s): geophysical techniques, mathematical analysis, maximum likelihood estimation, phase estimation, radar interferometry, DS interferometry procedure, coherence-weighted PT, distributed-scatterer interferometry, eigendecomposition-based phase estimator, equal-weighted PT, estimation procedure weight value, least square estimator, mathematical framework, mathematical relation analysis, maximum-likelihood phase estimator, modified PT algorithm, persistent-scatterer interferometry measurement point, phase-triangulation algorithm, published PT method, Coherence, Covariance matrices, Interferometry, Maximum likelihood estimation, Remote sensing, Synthetic aperture radar, Differential interferometric synthetic aperture radar (DInSAR), distributed scatterer (DS) interferometry, persistent scatterer (PS) interferometry (PSI), phase triangulation (PT), synthetic aperture radar (SAR). [Abstract] [bibtex-entry]

  5. Y. Gao, W. Yu, Y. Liu, R. Wang, and C. Shi. Sharpness-Based Autofocusing for Stripmap SAR Using an Adaptive-Order Polynomial Model. IEEE Geoscience and Remote Sensing Letters, 11(6):1086-1090, June 2014. Keyword(s): conjugate gradient methods, maximum likelihood estimation, optical focusing, polynomials, radar imaging, search problems, synthetic aperture radar, closed-form expression, airborne SAR data experiment, modified adaptive-order searching strategy, conjugate gradient algorithm, polynomial expansion coefficient, sharpness function gradient, maximum-posterior estimation, SAR, stripmap-mode synthetic aperture radar image data, adaptive-order polynomial model, image sharpness-based autofocusing technique, Synthetic aperture radar, Polynomials, Accuracy, Estimation, Azimuth, Adaptation models, Optimization, Autofocus, conjugate gradient method (CGM), sharpness, synthetic aperture radar (SAR), Autofocus, conjugate gradient method (CGM), sharpness, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]

  6. T. O. Saebo, S. A. V. Synnes, and Roy E. Hansen. Wideband Interferometry in Synthetic Aperture Sonar. IEEE Transactions on Geoscience and Remote Sensing, 51(8):4450-4459, August 2013. Keyword(s): Synthetic Aperture Sonar, SAS, autonomous aerial vehicles, geophysical image processing, image resolution, oceanographic equipment, oceanographic techniques, radar imaging, radar interferometry, remote sensing by radar, synthetic aperture radar, Goldstein branch cut phase unwrapping algorithm, HISAS wideband interferometric SAS, HUGIN autonomous underwater vehicle, SAS interferometry, absolute phase difference, advanced phase unwrapping techniques, complex cross correlation technique, direct phase difference estimation, final phase estimate, high resolution images, interferometric data processing, misregistrated areas, multiband split spectrum technique, multichromatic approach, narrowband interferometry processing, phase ambiguities, seafloor, synthetic aperture sonar interferometry, topographic maps, wideband interferometry techniques, Delay effects, Interferometry, Maximum likelihood estimation, Synthetic aperture sonar, Wideband, Complex cross correlation, multichromatic analysis, split spectrum algorithm, synthetic aperture radar (SAR), synthetic aperture sonar (SAS), wideband interferometry. [Abstract] [bibtex-entry]

  7. Yuanyuan Wang, Xiao Xiang Zhu, and Richard Bamler. Retrieval of phase history parameters from distributed scatterers in urban areas using very high resolution SAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 73(0):89 - 99, 2012. Keyword(s): SAR Processing, Interferometry, SAR Interferometry, InSAR, Persistent Scatterer Interferometry, PSI, Phase history, Distributed scatterer, Covariance matrix, TerraSAR-X, Spaceborne SAR. [Abstract] [bibtex-entry]

  8. L. Zhang, Z. Qiao, M. Xing, L. Yang, and Z. Bao. A Robust Motion Compensation Approach for UAV SAR Imagery. IEEE Trans. Geosci. Remote Sens., 50(8):3202-3218, August 2012. Keyword(s): autonomous aerial vehicles, geophysical image processing, geophysical techniques, maximum likelihood estimation, motion compensation, remote sensing by radar, synthetic aperture radar, robust motion compensation approach, UAV SAR imagery, unmanned aerial vehicle, synthetic aperture radar, remote sensing application, atmospheric turbulence, range invariant motion error, weighted phase gradient autofocus, nonsystematic range cell migration function, range dependent phase error, maximum likelihood WPGA algorithm, subaperture phase error, inertial navigation system, Electronics packaging, Estimation, Trajectory, Robustness, Navigation, Thyristors, Geometry, Local maximum-likelihood (LML), motion compensation (MOCO), phase gradient autofocus (PGA), synthetic aperture radar (SAR), unmanned aerial vehicle (UAV), weighted phase gradient autofocus (WPGA). [Abstract] [bibtex-entry]

  9. Xiao Xiang Zhu and Richard Bamler. Super-Resolution Power and Robustness of Compressive Sensing for Spectral Estimation With Application to Spaceborne Tomographic SAR. IEEE Trans. Geosci. Remote Sens., 50(1):247-258, January 2012. Keyword(s): SAR Processing, SAR Tomography, Tomography, Compressive Sensing, CS, InSAR, SAR Interferometry, Interferometry, Persistent Scatterer Interferometry, PSI, TerraSAR-X, X-band, Estimation, Image resolution, Minimization, Noise, Robustness, Strontium, Tomography, Fourier analysis, data acquisition, geophysical techniques, least squares approximations, maximum likelihood estimation, minimisation, probability, remote sensing by radar, spaceborne radar, synthetic aperture radar, tomography, Fourier domain sample, Rayleigh resolution analysis, SL1MMER algorithm, TomoSAR algorithm, compressive sensing robustness analysis, generic super-resolution problem, maximum likelihood parameter estimation, nonlinear least-squares estimation, numerical simulation, probability, spaceborne SAR tomography, sparse spectral estimation, spectral estimation method, super-resolution power, uniformly distributed phase difference analysis, Compressive sensing (CS), SAR tomography (TomoSAR), SL1MMER, spectral estimation, super-resolution (SR). [Abstract] [bibtex-entry]

  10. D. D'Aria, A. Ferretti, A.M. Guarnieri, and S. Tebaldini. SAR Calibration Aided by Permanent Scatterers. IEEE Trans. Geosci. Remote Sens., 48(4):2076-2086, April 2010. Keyword(s): SAR Processing, PSI, Persistent Scatterer Interferometry, Differential SAR Interferometry, C band spaceborne SAR, Ku band ground based SAR, PS based normalisation, SAR calibration, absolute calibrated devices, corner reflectors, interferometric SAR image stack, iterative maximum likelihood method, permanent scatterers, radiometric stability, repeated SAR acquisitions, stable targets, synthetic aperture radar, calibration, electromagnetic wave scattering, iterative methods, maximum likelihood estimation, radar interferometry, remote sensing by radar, spaceborne radar, synthetic aperture radar. [Abstract] [bibtex-entry]

  11. Esra Erten, Andreas Reigber, Olaf Hellwich, and Pau Prats. Glacier Velocity Monitoring by Maximum Likelihood Texture Tracking. IEEE Transactions on Geoscience and Remote Sensing, 47(2):394-405, Feb. 2009. Keyword(s): SAR Processing, glaciology, hydrological techniques, image processing, maximum likelihood estimation, remote sensing by radar, spaceborne radar, synthetic aperture radar, Asia, ENVISAT-ASAR data acquisition, Inyltshik glacier, Kyrgyzstan, Maximum Likelihood Texture Tracking, alpine glacier systems, classical intensity tracking technique, glacier velocities measurement, glacier velocity monitoring, ice flows, intensity-based matching algorithm, melting, multiplicative speckle/noise model, remotely sensed data, signal-to-noise ratio, snowfall, spatial dynamics, speckle decorrelation, statistical description, synthetic aperture radar data, temporal dynamics, temporal speckle structure, tracking algorithm. [Abstract] [bibtex-entry]

  12. T. J. Schulz. Optimal Sharpness Function for SAR Autofocus. IEEE Signal Processing Letters, 14(1):27-30, January 2007. Keyword(s): error correction, error statistics, maximum likelihood estimation, radar imaging, synthetic aperture radar, image-domain sharpness function, autofocusing, phase-error correction, synthetic aperture radar imagery, SAR, optimization, statistical estimation, maximum-likelihood estimation, maximum-posterior estimation, intensity-squared sharpness, Layout, Phase estimation, Optimization methods, Synthetic aperture radar, Discrete Fourier transforms, Maximum likelihood estimation, Reflectivity, Error correction, Computer errors, Signal processing, MAP estimation, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]

  13. M. Eineder and N. Adam. A maximum-likelihood estimator to simultaneously unwrap, geocode, and fuse SAR interferograms from different viewing geometries into one digital elevation model. Geoscience and Remote Sensing, IEEE Transactions on, 43(1):24 - 36, jan. 2005. Keyword(s): SAR interferogram fusion, SAR interferogram geocoding, SAR interferogram unwrapping, SRTM, Shuttle Radar Topography Mission, critical phase-unwrapping, digital elevation model, geometric baseline error estimates, heterogeneous synthetic aperture radar interferograms, incidence angle, interferometric multiangle observations, interferometric multibaseline observations, map geometry, maximum-likelihood algorithm, maximum-likelihood estimation, periodic likelihood function, radar baseline, radar heading angle, radar wavelength, rugged terrain, scatterer height, terrain mapping, viewing geometries, geophysical signal processing, maximum likelihood estimation, radar signal processing, radiowave interferometry, remote sensing by radar, synthetic aperture radar, terrain mapping;. [Abstract] [bibtex-entry]

  14. G. Fornaro, A. Pauciullo, and E. Sansosti. Phase difference-based multichannel phase unwrapping. IEEE Transactions on Image Processing, 14(7):960-972, July 2005. Keyword(s): image processing, maximum likelihood phase unwrapping algorithm, phase difference-based multichannel phase unwrapping algorithm, image processing, maximum likelihood estimation, Algorithms, Artificial Intelligence, Image Enhancement, Image Interpretation, Computer-Assisted, Imaging, Three-Dimensional, Information Storage and Retrieval, Pattern Recognition, Automated, Radar, Subtraction Technique. [Abstract] [bibtex-entry]

  15. Christoph H. Gierull and Ishuwa C. Sikaneta. Estimating the effective number of looks in interferometric SAR data. IEEE Trans. Geosci. Remote Sens., 40(8):1733-1742, August 2002. Keyword(s): SAR Processing, ENL, effective number of looks, maximum likelihood estimation, method of moments, radar imaging, radiowave interferometry, remote sensing by radar, synthetic aperture radar, CFAR detection thresholds, MoM, adjacent pixels, compensation, complex correlation coefficient, constant false alarm rate detection thresholds, effective number of looks, filtering, interferometric SAR data, maximum-likelihood estimator, method of moments, moving-target detection, multilook interferometric phase, pdf, probability density function, statistical dependence, synthetic aperture radar images, Clutter, Interferometry, Layout, Maximum likelihood estimation, Pixel, Probability density function, Radar detection, Speckle, Statistics. [Abstract] [bibtex-entry]

  16. Charles V. Jakowatz and Daniel E. Wahl. Eigenvector method for maximum-likelihood estimation of phase errors in synthetic-aperture-radar imagery. J. Opt. Soc. Am. A, 10(12):2539-2546, 1993. Keyword(s): SAR Processing, Autofocus, Motion Compensation, MoComp, Residual Motion Errors, Airborne SAR, Phase Gradient Autofocus, PGA, Eigenvector Method, Maximum Likelihood Estimation. [bibtex-entry]

  17. Petre Stoica, Randolph L. Moses, Benjamin Friedlander, and Torsten Söderström. Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements. Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Processing], IEEE Transactions on, 37(3):378-392, 1989. Keyword(s): RFI Suppression, filtering and prediction theory, spectral analysis, Cramer-Rao bound covariance matrix, initial estimates, maximum-likelihood, maximum-likelihood estimator, MLE, multiple sinusoids, noisy measurements, spectral analysis. [Abstract] [bibtex-entry]

Conference articles

  1. V. C. Koo, T. S. Lim, and H. T. Chuah. A Comparison of Autofocus Algorithms for SAR Imagery. In Progress In Electromagnetics Research Symposium, volume 1, Hangzhou, China, pages 16-9, 2005. Keyword(s): SAR Processing, Autofocus, Motion Compensation, MoComp, Residual Motion Errors, Comparion of Algorithms, Comparison of Autofocus Algorithms, Airborne SAR, Phase Gradient Autofocus, PGA, Eigenvector Method, Maximum Likelihood Estimation. [Abstract] [bibtex-entry]

  2. Kenneth Knaell. Three-dimensional SAR from curvilinear apertures. In Radar Conference, 1996., Proceedings of the 1996 IEEE National, pages 220-225, 1996. Keyword(s): SAR Processing, Non-Linear Flight Path, SAR Tomography, curvilinear SAR, image enhancement, interference suppression, maximum likelihood estimation, radar antennas, radar clutter, radar cross-sections, radar imaging, synthetic aperture radar, IMP algorithm, aperture configuration, artifacts, coherent CLEAN algorithm, curvilinear apertures, dynamic range, image sidelobes, image size, imaging techniques, likelihood extremization, maximum likelihood estimation, scatterers, sidelobe leakage effects, three-dimensional SAR. [Abstract] [bibtex-entry]



Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.

Last modified: Mon Feb 1 16:40:23 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .

This document was translated from BibTEX by bibtex2html