BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'Thyristors'

Articles in journal or book chapters

  1. A. Recchia, Andrea Monti Guarnieri, Antonio Broquetas, and Antonio Leanza. Impact of Scene Decorrelation on Geosynchronous SAR Data Focusing. IEEE Transactions on Geoscience and Remote Sensing, 54(3):1635-1646, March 2016. Keyword(s): SAR Processing, SAR focusing, autofocus, atmospheric phase, atmospheric phase screen, APS, decorrelation, temporal decorrelation, geostationary, geosynchronous, radar clutter, radar resolution, synthetic aperture radar, Billingsley intrinsic clutter motion model, GEOSAR signal-to-clutter ratio, azimuth resolution, clutter energy, geosynchronous SAR data focusing, ground based radar experiment, power spectral density, scene decorrelation, two-way propagation losses, Azimuth, Clutter, Decorrelation, Focusing, Synthetic aperture radar, Thyristors, Focusing, Geosynchronous Synthetic Aperture Radar (GEOSAR), scene decorrelation, wind-blown clutter. [Abstract] [bibtex-entry]


  2. Alberto Villa, Lorenzo Iannini, Davide Giudici, Andrea Monti-Guarnieri, and Stefano Tebaldini. Calibration of SAR Polarimetric Images by Means of a Covariance Matching Approach. IEEE Trans. Geosci. Remote Sens., 53(2):674-686, February 2015. Keyword(s): Faraday effect, calibration, covariance analysis, numerical analysis, optimisation, parameter estimation, radar imaging, radar polarimetry, synthetic aperture radar, Faraday rotation, SAR polarimetric imaging, corner reflector, covariance matching approach, intrinsic ambiguity identification, numerical method, optimization, polarimetric calibration, repeated full polarimetric ALOS PALSAR imaging, retrieved distortion parameter stability, synthetic aperture radar, system polarimetric distortion parameter estimation, Calibration, Eigenvalues and eigenfunctions, Estimation, Faraday effect, Noise, Sensitivity, Thyristors, Covariance matching, Faraday rotation, numerical methods, polarimetric calibration. [Abstract] [bibtex-entry]


  3. F. Bovenga, V.M. Giacovazzo, A. Refice, and N. Veneziani. Multichromatic Analysis of InSAR Data. IEEE Trans. Geosci. Remote Sens., 51(9):4790-4799, September 2013. Keyword(s): SAR Processing, airborne radar, geophysical image processing, radar imaging, radar interferometry, remote sensing by radar, synthetic aperture radar, AES-1 airborne sensor, InSAR data multichromatic analysis, MCA absolute phase measurement, MCA experimental validation, MCA processing parameters, absolute optical path difference inference, central carrier frequency, height estimation performance, height information retrieval, interferometric SAR image pairs, parametric analysis, pixel phase trend, spatial phase unwrapping, wideband SAR single pass interferometric data set, Accuracy, Bandwidth, Distance measurement, Estimation, Noise, Synthetic aperture radar, Thyristors, synthetic aperture radar interferometry (InSAR). [Abstract] [bibtex-entry]


  4. P. Prats-Iraola, R. Scheiber, L. Marotti, S. Wollstadt, and A. Reigber. TOPS Interferometry With TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 50(8):3179-3188, August 2012. Keyword(s): SAR Processing, TOPS, Terrain Observation by Progressive Scans, Doppler radar, geophysical image processing, image registration, radar imaging, radar interferometry, remote sensing by radar, synthetic aperture radar, Doppler centroid, SAR interferometry, TOPS imaging mode, TOPS interferometry, TerraSAR-X, Terrain Observation by Progressive Scans imaging mode, accurate interferometric products, azimuth coregistration performance, burst edges, coregistration accuracy, repeat pass TOPS data, squint effects, stripmap interferometric data, Accuracy, Azimuth, Doppler effect, Electrostatic discharges, Estimation, Orbits, Thyristors, Coregistration, SAR interferometry, TOPS interferometry, synthetic aperture radar (SAR), terrain observation by progressive scans (TOPS). [bibtex-entry]


  5. L. Zhang, Z. Qiao, M. Xing, L. Yang, and Z. Bao. A Robust Motion Compensation Approach for UAV SAR Imagery. IEEE Trans. Geosci. Remote Sens., 50(8):3202-3218, August 2012. Keyword(s): autonomous aerial vehicles, geophysical image processing, geophysical techniques, maximum likelihood estimation, motion compensation, remote sensing by radar, synthetic aperture radar, robust motion compensation approach, UAV SAR imagery, unmanned aerial vehicle, synthetic aperture radar, remote sensing application, atmospheric turbulence, range invariant motion error, weighted phase gradient autofocus, nonsystematic range cell migration function, range dependent phase error, maximum likelihood WPGA algorithm, subaperture phase error, inertial navigation system, Electronics packaging, Estimation, Trajectory, Robustness, Navigation, Thyristors, Geometry, Local maximum-likelihood (LML), motion compensation (MOCO), phase gradient autofocus (PGA), synthetic aperture radar (SAR), unmanned aerial vehicle (UAV), weighted phase gradient autofocus (WPGA). [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:25:21 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html