BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'forest stand'

Articles in journal or book chapters

  1. Jorge Jorge Ruiz, Risto Vehmas, Juha Lemmetyinen, Josu Uusitalo, Janne Lahtinen, Kari Lehtinen, Anna Kontu, Kimmo Rautiainen, Riku Tarvainen, Jouni Pulliainen, and Jaan Praks. SodSAR: A Tower-Based 1-10 GHz SAR System for Snow, Soil and Vegetation Studies. Sensors, 20(22), 2020. [Abstract] [bibtex-entry]


  2. Lars M. H. Ulander, Albert R. Monteith, Macej J. Soja, and Leif E. B. Eriksson. Multiport Vector Network Analyzer Radar for Tomographic Forest Scattering Measurements. IEEE Geoscience and Remote Sensing Letters, 15(12):1897-1901, December 2018. Keyword(s): SAR Tomography, BorealScat, antenna arrays, multiport networks, network analysers, radar antennas, radar imaging, S-parameters, tomographic forest scattering measurements, C-band radar, BorealScat, radar tomography, vertical antenna array, vertical scattering distribution, temporal decorrelation, reflected signals, 20-port vector network analyzer, stepped-frequency waveform, 20-element arrays, radar measurements, hemiboreal forest, tomographic imaging capabilities, multiport VNA tomography results, 2-port VNA measurement scheme, multiport vector network analyzer radar, P-band radar, L-band radar, polarimetric time-series measurements, Antenna measurements, Antenna arrays, Forestry, Tomography, Radar, Radar antennas, Switches, BorealScat, forest, polarimetry, radar, scattering, time series, tomography, vector network analyzer (VNA). [Abstract] [bibtex-entry]


  3. Astor T. Caicoya, Matteo Pardini, Irena Hajnsek, and Konstantinos P. Papathanassiou. Forest Above-Ground Biomass Estimation From Vertical Reflectivity Profiles at L-Band. IEEE Geosci. Remote Sens. Lett., 12(12):2379-2383, December 2015. Keyword(s): SAR Processing, SAR Tomography, L-band, Capon, forestry, vegetation mapping, L-band reflectivity profiles, SAR tomography, forest above-ground biomass estimation, forest stand densities, height measurements, root-mean-square error, vertical forest structure information, vertical radar reflectivity profiles, vertical reflectivity profiles, Biomass, Estimation, Image color analysis, L-band, Remote sensing, Synthetic aperture radar, Forest allometry, L-band, forest biomass, synthetic aperture radar (SAR) tomography, vertical forest structure, vertical reflectivity profiles. [Abstract] [bibtex-entry]


  4. Keith Morrison, John Bennett, and Svein Solberg. Ground-based C-band tomographic profiling of a conifer forest stand. International Journal of Remote Sensing, 34(21):7838-7853, September 2013. [bibtex-entry]


  5. Dawei Liu, Guoqing Sun, Zhifeng Guo, K.J. Ranson, and Yang Du. Three-Dimensional Coherent Radar Backscatter Model and Simulations of Scattering Phase Center of Forest Canopies. IEEE Trans. Geosci. Remote Sens., 48(1):349-357, January 2010. Keyword(s): 3D coherent radar backscatter model, InSAR signals, SAR interferometric data, canopy height, canopy spatial structure, forest canopies, forest stand, forest structural parameters, ground surface backscattering, interferometric SAR, scattering phase center simulations, synthetic aperture radar, time delay, backscatter, geophysical signal processing, radar interferometry, remote sensing by radar, synthetic aperture radar, vegetation;. [Abstract] [bibtex-entry]


  6. K. Sarabandi and Y.-C. Lin. Simulation of interferometric SAR response for characterizing the scattering phase center statistics of forest canopies. IEEE Trans. Geosci. Remote Sens., 38(1):115-125, January 2000. Keyword(s): InSAR, Monte Carlo simulation, SAR, backscatter, coherent scattering model, equivalent scatterer, forest, forest canopy, forestry, fractal, geophysical measurement technique, interferometric SAR, physical parameters, radar remote sensing, radar theory, scatterer collection, scattering phase center statistics, simulation, synthetic aperture radar, vegetation mapping, Monte Carlo methods, backscatter, forestry, fractals, geophysical techniques, radar cross-sections, radar theory, remote sensing by radar, synthetic aperture radar, vegetation mapping;. [Abstract] [bibtex-entry]


  7. H. Israelsson, L. M. H. Ulander, J. L. H. Askne, J. E. S. Fransson, P.-O. Frölind, A. Gustavsson, and H. Hellsten. Retrieval of forest stem volume using VHF SAR. IEEE Trans. Geosci. Remote Sens., 35(1):36-40, January 1997. Keyword(s): SAR Processing, Forest, Forest parameters, biomass, 28 to 60 MHz, CARABAS, HF radar, Oland, SAR, Sweden, VHF radar, airborne radar, backscattering coefficient, biomass, coherent all radio band sensing, deciduous mixed forest, dense forest, discrimination, forest stem volume, forestry, geophysical measurement technique, horizontal dipole array, radar imaging, radar remote sensing, radar scattering, tree trunk, vegetation mapping, wood, airborne radar, forestry, geophysical techniques, radar cross-sections, radar imaging, remote sensing by radar, synthetic aperture radar. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:23:23 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html