BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'Geophysics computing'

Articles in journal or book chapters

  1. Alberto Martinez-Vazquez and Joaquim Fortuny-Guasch. A GB-SAR Processor for Snow Avalanche Identification. IEEE Trans. Geosci. Remote Sens., 46(11):3948-3956, November 2008. Keyword(s): SAR Processing, GBSAR, ground-based radar, ground-based SAR, feature extraction, geomorphology, geophysical techniques, geophysics computing, image classification, image segmentation, risk management, snow, synthetic aperture radar, features extraction, ground-based SAR processor, image thresholding, morphological filters, object classification, risk assessment, snow avalanches detection, snow avalanches identification, synthetic aperture radar images, Event detection, Feature extraction, Filters, Monitoring, Object detection, Radar detection, Snow, Statistics, Synthetic aperture radar, Testing, Classification, coherence, ground-based synthetic aperture radar (GBSAR), snow avalanche. [Abstract] [bibtex-entry]


  2. Andrea Monti-Guarnieri and Stefano Tebaldini. On the Exploitation of Target Statistics for SAR Interferometry Applications. IEEE Transactions on Geoscience and Remote Sensing, 46(11):3436-3443, November 2008. Keyword(s): SAR Processing, Phase Linking, SAR Tomography, geophysical techniques, geophysics computing, image processing, radar interferometry, remote sensing by radar, synthetic aperture radar, topography (Earth)ENVISAT images, Monte Carlo simulations, SAR interferometry applications, decorrelation models, interferometric phases, line-of-sight displacement, line-of-sight motion, multiimage synthetic aperture radar interferometry, physical parameters, residual topography, target statistics. [Abstract] [bibtex-entry]


  3. Curtis W. Chen and Howard A. Zebker. Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens., 40(8):1709-1719, August 2002. Keyword(s): SAR Processing, phase unwrapping, SNAPHU, geophysical signal processing, image segmentation, optimisation, radar imaging, radiowave interferometry, remote sensing by radar, statistical analysis, synthetic aperture radar, InSAR data, SNAPHU, a posteriori probability, central Alaska, full-size interferograrn, generalized network models, interferometric input data, interferometric synthetic aperture radar data, large SAR interferograms, network-flow, nonlinear solver, phase unwrapping, secondary optimization problem, statistical models, statistical segmentation, statistical-cost network-flow phase-unwrapping algorithm, tile-unwrapping stage, tiles, topographic interferogram, Algorithm design and analysis, Data analysis, Geophysics computing, Partitioning algorithms, Phase estimation, Probability, Synthetic aperture radar interferometry, Two dimensional displays. [Abstract] [bibtex-entry]


  4. Jong-Sen Lee, K. W. Hoppel, S. A. Mango, and A. R. Miller. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans. Geosci. Remote Sens., 32(5):1017-1028, September 1994. Keyword(s): feature extraction, geophysical techniques, geophysics computing, image coding, image recognition, remote sensing by radar, synthetic aperture radar, complex correlation coefficient, data compression, decorrelation effects, feature classification, feature extraction, geophysical measurement technique, image classification, intensity statistics, interferometric SAR imagery, land surface imaging, multilook phase difference, multilook polarimetry, phase statistics, probability density function, radar remote sensing, scattering matrix, signal processing, speckle reduction, synthetic aperture radar, Covariance matrix, Decorrelation, Density functional theory, NASA, Phase measurement, Radar polarimetry, Radar scattering, Sea measurements, Speckle, Statistics. [Abstract] [bibtex-entry]


  5. Didier Massonnet, F. Adragna, and M. Rossi. CNES general-purpose SAR correlator. IEEE Trans. Geosci. Remote Sens., 32(3):636-643, 1994. Keyword(s): SAR Processing, Presumming, geophysical techniques, geophysics computing, image processing, remote sensing, remote sensing by radar, synthetic aperture radar, CNES general-purpose SAR correlator, constant phase reference, contrast seeker, data presumming, fast Fourier transform, frequency azimuth frequency domain, geophysical measurement technique, interferometry, land surface, migration compensation, multilooking, polynomial law generator, quick look, radar remote sensing, radiometric equalization map, signal processing, software, standard single look complex product, synthetic aperture radar, terrain mapping. [Abstract] [bibtex-entry]


Conference articles

  1. Urs Wegmuller, Charles L. Werner, Tazio Strozzi, Andreas Wiesmann, Othmar Frey, and Maurizio Santoro. Sentinel-1 IWS mode support in the GAMMA software. In IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), pages 431-436, September 2015. Keyword(s): SAR Processing, TOPS, TOPS mode, Terrain Observation by Progressive Scans, Sentinel-1, Interferometry, SAR Interferometry, Spaceborne SAR, geophysics computing, image registration, meta data, radar computing, radar imaging, radar interferometry, remote sensing by radar, synthetic aperture radar, Fhe steep azimuth spectra ramp, GAMMA software, IWS data, InSAR processing, PSI, Sentinel-1 IWS mode support, Sentinel-1 SAR, TOPS, high-level software package, interferometrie wide-swath data, meta data, synthetic aperture radar, Apertures, Conferences, Decision support systems, DINSAR, GAMMA Software, Nepal earthquake, PSI, Sentinel-1 TOPS IWS, ionospheric effects, offset-tracking, spectral diversity, split-beam interferometry. [Abstract] [bibtex-entry]


  2. Christian Andres, Torben Keil, Raik Herrmann, and Rolf Scheiber. A multiprocessing framework for SAR image processing. In , pages 524-527, July 2007. Keyword(s): SAR Processing, Airborne SAR, application program interfaces, geophysics computing, grid computing, image processing, multiprocessing systems, synthetic aperture radar, workstation clusters, F-SAR, SAR image processing, airborne SAR sensor, application programming interface, cluster grids, different architectures, multiprocessing framework, source code, synthetic aperture radar, workstation cluster. [Abstract] [bibtex-entry]


  3. F. Gatelli, Andrea Monti-Guarnieri, Claudio Prati, and Fabio Rocca. Medium resolution efficient phase preserving focusing for interferometry. In IGARSS '96, International Geoscience and Remote Sensing Symposium, volume 1, pages 671-673, 1996. Keyword(s): SAR Processing, Presumming, Interferometry, geophysical signal processing, geophysical techniques, image processing, image resolution, radar imaging, radar signal processing, synthetic aperture radar, SAR imagery, SAR interferometry, Unix Workstations, algorithm, coherence map, geophysical measurement technique, geophysics computing, image pair, image processing, image resolution, land surface, medium resolution efficient phase preserving focusing, radar imaging, radar remote sensing, radar signal processing, real time method, strip-map SAR interferogram, synthetic aperture radar, terrain mapping. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:39:57 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html