BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'radar computing'

Articles in journal or book chapters

  1. K. K. Knaell and G. P. Cardillo. Radar tomography for the generation of three-dimensional images. IEE Proceedings - Radar, Sonar and Navigation, 142(2):54-60, April 1995. Keyword(s): SAR Processing, SAR Tomography, TomoSAR, computerised tomography, Fourier transforms, microwave imaging, radar computing, radar cross-sections, radar imaging, radar tomography, three-dimensional images generation, computer-aided tomography, 2D cross-sectional image, radar imaging, microwave energy reflection, radar cross-section density, 1D projection, Fourier slice theorem states, backprojection algorithm, sampled transform function, 1D range profiles, point spread functions, Tomography, Fourier transforms, Microwave imaging, Radar data processing, Radar cross sections, Radar imaging. [Abstract] [bibtex-entry]


Conference articles

  1. Urs Wegmuller, Charles L. Werner, Tazio Strozzi, Andreas Wiesmann, Othmar Frey, and Maurizio Santoro. Sentinel-1 IWS mode support in the GAMMA software. In IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), pages 431-436, September 2015. Keyword(s): SAR Processing, TOPS, TOPS mode, Terrain Observation by Progressive Scans, Sentinel-1, Interferometry, SAR Interferometry, Spaceborne SAR, geophysics computing, image registration, meta data, radar computing, radar imaging, radar interferometry, remote sensing by radar, synthetic aperture radar, Fhe steep azimuth spectra ramp, GAMMA software, IWS data, InSAR processing, PSI, Sentinel-1 IWS mode support, Sentinel-1 SAR, TOPS, high-level software package, interferometrie wide-swath data, meta data, synthetic aperture radar, Apertures, Conferences, Decision support systems, DINSAR, GAMMA Software, Nepal earthquake, PSI, Sentinel-1 TOPS IWS, ionospheric effects, offset-tracking, spectral diversity, split-beam interferometry. [Abstract] [bibtex-entry]


  2. Thomas M. Benson, Daniel P. Campbell, and Daniel A. Cook. Gigapixel spotlight synthetic aperture radar backprojection using clusters of GPUs and CUDA. In 2012 IEEE Radar Conference, pages 0853-0858, May 2012. Keyword(s): SAR Processing, Back-Projection, Time-Domain Back-Projection, TDBP, CUDA, GPU, SAR Focusing, Azimuth Focusing, fast Fourier transforms, graphics processing units, parallel architectures, radar computing, radar imaging, resource allocation, synthetic aperture radar, CUDA Clusters, GPU Clusters, SAR image formation, computing nodes, fast Fourier transforms, gigapixel scale data set, gigapixel spotlight synthetic aperture radar backprojection, graphics processing units, image formation algorithms, image formation framework, nonplanar surfaces, wavefront planarity, Graphics processing unit, History, Interpolation, Kernel, Scalability, Sparse matrices, Synthetic aperture radar. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:40:50 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html