BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'total electron content'

Articles in journal or book chapters

  1. Elvira Musico, Claudio Cesaroni, Luca Spogli, John P. Merryman Boncori, De Franceschi Giorgiana, and Roberto Seu. The Total Electron Content From InSAR and GNSS: A Midlatitude Study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5):1725-1733, May 2018. Keyword(s): SAR Processing, Ionosphere, Global Positioning System, atmospheric techniques, radar interferometry, rain, remote sensing by radar, satellite navigation, synthetic aperture radar, ALOS-PALSAR, GNSS experimental measurements, GNSS receivers, InSAR images, L-band InSAR, RING network, Rete Integrata Nazionale GPS network, TEC variability, advanced land observing satellite, array type L-band synthetic aperture radar, correlation coefficient, dense network, global navigation satellite system receivers, interferometric phase, interferometric synthetic aperture radar, ionospheric information, midlatitude study, night-time case studies, reference true ionospheric TEC, total electron content, tropospheric contribution, Azimuth, Correlation, Earth, Global navigation satellite system, Ionosphere, Receivers, Synthetic aperture radar, Global positioning system, ionosphere, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  2. Masato Furuya, Takato Suzuki, Jun Maeda, and Kosuke Heki. Midlatitude sporadic-E episodes viewed by L-band split-spectrum InSAR. Earth, Planets and Space, 69(1):175, December 2017. Keyword(s): SAR Processing, SAR Interferometry, Interferometry, Split-Spectrum, Split-band, Split-Spectrum Interferometry, Split-band Interferometry, Total Electron Content Estimation, TEC Estimation, Ionospheric TEC, Faraday Rotation, Path Delay, Spaceborne SAR, L-Band, ALOS, Phased Array L-band SAR, PALSAR, Calibration, Ionosphere, Ionospheric Path Delay. [Abstract] [bibtex-entry]


  3. Giorgio Gomba, Fernando Rodriguez Gonzalez, and Francesco De Zan. Ionospheric Phase Screen Compensation for the Sentinel-1 TOPS and ALOS-2 ScanSAR Modes. IEEE_J_GRS, 55(1):223-235, January 2017. Keyword(s): SAR Processing, split-spectrum, split-spectrum interferometry, split-band, split-band interferometry, ionospheric disturbances, total electron content (atmosphere), 2015 Nepal earthquake, 2016 Taiwan earthquake, ALOS-2 ScanSAR modes, ALOS-2 interferograms, C-band interferograms, Sentinel-1 TOPS, dispersive ionospheric component, interferometric measurements, ionospheric phase screen compensation, local global positioning system measurements, split-spectrum method, synthetic aperture radar acquisitions, total electron content maps, Azimuth, Correlation, Electrostatic discharges, Ionosphere, Satellites, Synthetic aperture radar, Timing, InSAR, SAR ionospheric effects, ionosphere estimation, split-spectrum. [Abstract] [bibtex-entry]


  4. Jun Maeda, Takato Suzuki, Masato Furuya, and Kosuke Heki. Imaging the midlatitude sporadic E plasma patches with a coordinated observation of spaceborne InSAR and GPS total electron content. Geophysical Research Letters, 43(4):1419-1425, 2016. Keyword(s): sporadic E, GPS, total electron content, synthetic aperture radar, Kelvin-Helmholtz instability. [Abstract] [bibtex-entry]


  5. Jun Maeda and Kosuke Heki. Morphology and dynamics of daytime mid-latitude sporadic-E patches revealed by GPS total electron content observations in Japan. Earth, Planets and Space, 67(1):89, June 2015. Keyword(s): sporadic E, ionosphere, GPS, Global Positioning System, GNSS, Global Navigation Satellite System, GEONET, TEC, Total Electron Content. [Abstract] [bibtex-entry]


  6. Jun Maeda and Kosuke Heki. Two-dimensional observations of midlatitude sporadic E irregularities with a dense GPS array in Japan. Radio Science, 49(1):28-35, 2014. Keyword(s): sporadic E, ionosphere, GPS, Global Positioning System, GNSS, Global Navigation Satellite System, GEONET, TEC, Total Electron Content. [Abstract] [bibtex-entry]


  7. Michael Jehle, Othmar Frey, David Small, and Erich Meier. Measurement of Ionospheric TEC in Spaceborne SAR Data. IEEE Trans. Geosci. Remote Sens., 48(6):2460-2468, June 2010. Keyword(s): SAR Processing, Total Electron Content Estimation, TEC Estimation, Ionospheric TEC, Faraday Rotation, Path Delay, Autofocus, TEC Autofocus, Spaceborne SAR, L-Band, ALOS, Phased Array L-band SAR, PALSAR, P-Pand, Simulation, Calibration. [Abstract] [bibtex-entry]


  8. Michael Jehle, Maurice Rüegg, Lukas Zuberbühler, David Small, and Erich Meier. Measurement of Ionospheric Faraday Rotation in Simulated and Real Spaceborne SAR Data. IEEE Trans. Geosci. Remote Sens., 47(5):1512-1523, May 2009. Keyword(s): SAR Processing, Ionosphere, ALOS PALSAR, Advanced Land Observing Satellite, Earth's magnetic field, PALSAR data, Phased Array L-band Synthetic Aperture Radar, focused radar images, frequency-modulated electromagnetic wave traverse, ionospheric Faraday Rotation measurement, radar polarimetry, range-compressed, signal chirp bandwidth effects, signal path delays, spaceborne SAR data, spaceborne synthetic aperture radar, total electron content, TEC, Faraday effect, ionospheric electromagnetic wave propagation, radar polarimetry, radar signal processing, remote sensing by radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  9. Michael Jehle, Donat Perler, David Small, Adrian Schubert, and Erich Meier. Estimation of Atmospheric Path Delays in TerraSAR-X Data using Models vs. Measurements. Sensors, 8(12):8479-8491, 2008. Keyword(s): SAR Processing, Ionosphere, TEC, Total Electron Content, Troposphere, Path Delay. [bibtex-entry]


  10. Lianlin Li and Fang Li. Ionosphere tomography based on spaceborne SAR. Advances in Space Research, 42(7):1187-1193, October 2008. Keyword(s): SAR Processing, Ionosphere tomography, Spaceborne SAR, Electron density isolines, Inverse scattering technique for multi-layered random surfaces, Method of moment, MoM, TEC, Total Electron Content, CT, computerized tomography. [Abstract] [bibtex-entry]


  11. Franz Meyer, Richard Bamler, N. Jakowski, and Thomas Fritz. The Potential of Low-Frequency SAR Systems for Mapping Ionospheric TEC Distributions. IEEE_J_GRSL, 3(4):560-564, October 2006. Keyword(s): SAR Processing, electron density, ionosphere, ionospheric techniques, microwave propagation, synthetic aperture radar, SAR signal properties, broadband L-band SAR, broadband microwave radiation, correlation technique, dispersive media, group delay, interferometric technique, ionospheric TEC distribution mapping, ionospheric propagation effects, low-frequency SAR systems, phase advance, synthetic aperture radar, total electron content, two-frequency global positioning system observations, Delay systems, Dielectrics, Dispersion, Electrons, Ionosphere, L-band, Position measurement, Refractive index, Signal mapping, Synthetic aperture radar, Atmospheric effects, L-band SAR, SAR interferometry, correlation, dispersive media, ionosphere, synthetic aperture radar (SAR), total electron content (TEC). [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:41:33 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html