BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'L-band SAR'

Articles in journal or book chapters

  1. Albert R. Monteith and Lars M. H. Ulander. Temporal Survey of P- and L-Band Polarimetric Backscatter in Boreal Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10):3564-3577, October 2018. Keyword(s): SAR Tomography, backscatter, radar imaging, radar polarimetry, remote sensing by radar, spaceborne radar, synthetic aperture radar, vegetation mapping, temporal survey, L-band polarimetric backscatter, boreal forests, environmental conditions, seasonal variations, backscattered radar signal, biomass retrieval scheme, synthetic aperture radar data, electromagnetic scattering mechanisms, biomass estimation algorithms, L-band SAR missions, temporal changes, HV-polarized P, L-band radar backscatter, boreal forest site, environmental parameters, mature Norway spruce, above-ground biomass, approximately 250 tons/ha, BorealScat tower-based scatterometer, L-band backscatter, HH/VV backscatter ratio, average backscatter, double-bounce scattering, severe temporal decorrelation, P-band temporal coherence, mass 250.0 ton, time 5.0 min, noise figure 4.0 dB to 10.0 dB, Synthetic aperture radar, L-band, Backscatter, Biomass, Antenna arrays, Coherence, Backscatter, boreal forest, L-band, P-band, synthetic aperture radar (SAR), temporal coherence, time series. [Abstract] [bibtex-entry]


  2. Victor Cazcarra-Bes, Marivi Tello-Alonso, Rico Fischer, Michael Heym, and Konstantinos Papathanassiou. Monitoring of Forest Structure Dynamics by Means of L-Band SAR Tomography. Remote Sensing, 9(12), 2017. Keyword(s): SAR Processing, SAR Tomography, Forestry, Synthetic aperture radar, Image reconstruction, Decorrelation, Estimation, forest applications, forest structure, Fourier beamforming (FB), L-band, synthetic aperture radar (SAR), tomography, L-Band, Airborne SAR. [Abstract] [bibtex-entry]


  3. Masato Furuya, Takato Suzuki, Jun Maeda, and Kosuke Heki. Midlatitude sporadic-E episodes viewed by L-band split-spectrum InSAR. Earth, Planets and Space, 69(1):175, December 2017. Keyword(s): SAR Processing, SAR Interferometry, Interferometry, Split-Spectrum, Split-band, Split-Spectrum Interferometry, Split-band Interferometry, Total Electron Content Estimation, TEC Estimation, Ionospheric TEC, Faraday Rotation, Path Delay, Spaceborne SAR, L-Band, ALOS, Phased Array L-band SAR, PALSAR, Calibration, Ionosphere, Ionospheric Path Delay. [Abstract] [bibtex-entry]


  4. G. Gomba and F. De Zan. Bayesian Data Combination for the Estimation of Ionospheric Effects in SAR Interferograms. IEEE_J_GRS, 55(11):6582-6593, November 2017. Keyword(s): SAR Processing, split-spectrum, split-spectrum interferometry, split-band, split-band interferometry, Bayes methods, Faraday effect, fractals, inverse problems, ionospheric electromagnetic wave propagation, radar imaging, radar interferometry, remote sensing by radar, synthetic aperture radar, Bayesian data combination, Bayesian inverse problem, Faraday rotation method, SAR images, SAR interferograms, advanced land observing satellite phased array type L-band SAR L-band images, azimuth mutual shifts, data-based model parameter estimation, differential ionospheric phase screen, error source, estimation accuracy, information sources, interferometric pair images, ionosphere turbulence, ionospheric effects estimation, ionospheric propagation path delay, physically realistic fractal modeling, range variations, sensitive azimuth shifts, simple split-spectrum method, small-scale azimuth variations, synthetic aperture radar interferograms, Azimuth, Bayes methods, Estimation, Extraterrestrial measurements, Faraday effect, Ionosphere, Synthetic aperture radar, Ionosphere estimation, SAR ionospheric effects, interferometric synthetic aperture radar (SAR), methods\textquoteright combination. [Abstract] [bibtex-entry]


  5. Alexander G. Fore, Bruce D. Chapman, Brian P. Hawkins, Scott Hensley, Cathleen E. Jones, Thierry R. Michel, and Ronald J. Muellerschoen. UAVSAR Polarimetric Calibration. IEEE Trans. Geosci. Remote Sens., 53(6):3481-3491, June 2015. Keyword(s): SAR Processing, UAVSAR, Airborne SAR, Polarimetry, Polarimetric Calibration, calibration, radar polarimetry, remote sensing by radar, synthetic aperture radar, UAVSAR polarimetric calibration, UAVSAR radar performance, airborne repeat-track SAR data, interferometric measurements, quadpolarization mode, radiometric calibration, reconfigurable polarimetric L-band SAR, residual RMS errors, root-mean-square, stable crosstalk estimates, uninhabited aerial vehicle synthetic aperture radar, Azimuth, Calibration, Crosstalk, Image resolution, Radiometry, Synthetic aperture radar, Airborne radar, polarimetric SAR, radar cross-sections, radar imaging, radar measurements, radar polarimetry, radar remote sensing, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  6. Yu Morishita and Ramon F. Hanssen. Temporal Decorrelation in L-, C-, and X-band Satellite Radar Interferometry for Pasture on Drained Peat Soils. IEEE Trans. Geosci. Remote Sens., 53(2):1096-1104, February 2015. Keyword(s): SAR Processing, Decorrelation, Temporal Decorrelation, geophysical signal processing, land use, radar interferometry, remote sensing by radar, soil, synthetic aperture radar, terrain mapping, vegetation, vegetation mapping, ALOS-2 satellite, Advanced Land Observation Satellite mission, C-band SAR observations, C-band satellite radar interferometry, Envisat mission, European Remote Sensing Satellite mission, L-band SAR observations, L-band satellite radar interferometry, RADARSAT-2 mission, Sentinel-1 satellite, TerraSAR-X mission, X-band SAR observations, X-band satellite radar interferometry, a priori assessment, actual land use, climatological circumstances, coherence estimation window sizes, coherence levels, coherent information, coherent signal, drained peat soils, frequency function, generic models, interferograms, interferometric applications, nonurban areas, optimal data sets, pasture, repeat intervals, repeat orbits, satellite missions, soil types, synthetic aperture radar interferometry, temporal decorrelation model, temporal dynamics, vegetation types, Coherence, Decorrelation. [Abstract] [bibtex-entry]


  7. Michael Jehle, Othmar Frey, David Small, and Erich Meier. Measurement of Ionospheric TEC in Spaceborne SAR Data. IEEE Trans. Geosci. Remote Sens., 48(6):2460-2468, June 2010. Keyword(s): SAR Processing, Total Electron Content Estimation, TEC Estimation, Ionospheric TEC, Faraday Rotation, Path Delay, Autofocus, TEC Autofocus, Spaceborne SAR, L-Band, ALOS, Phased Array L-band SAR, PALSAR, P-Pand, Simulation, Calibration. [Abstract] [bibtex-entry]


  8. Maxim Neumann, Laurent Ferro-Famil, and Andreas Reigber. Estimation of Forest Structure, Ground, and Canopy Layer Characteristics From Multibaseline Polarimetric Interferometric SAR Data. IEEE Trans. Geosci. Remote Sens., 48(3):1086-1104, March 2010. Keyword(s): SAR Processing, Multibaseline SAR, Germany, PolInSAR, RVoG, vertical structure, Traunstein test site, airborne SAR, L-band, angular distribution, canopy layer heights, differential extinction, double-bounce ground-trunk interactions, forest layer heights, forest parameter retrieval, forest structure estimation, forest vegetation, ground topography, ground-to-volume ratio, ground-truth measurements, interferometric coherence, particle scattering anisotropy, polarimetric Synthetic Aperture Radar interferometry, polarimetric decomposition, polarimetric scattering media model, polarization orientation randomness, random-volume-over-ground PolInSAR parameter inversion, repeat-pass configuration, root-mean-square error, surface scattering, temporal decorrelation, tree morphology, volume coherency matrices, volumetric canopy, volumetric understory scattering, wave attenuation, radar interferometry, radar polarimetry, remote sensing by radar, synthetic aperture radar, vegetation mapping;. [Abstract] [bibtex-entry]


  9. Jong-Sen Lee, T.L. Ainsworth, J.P. Kelly, and C. Lopez-Martinez. Evaluation and Bias Removal of Multilook Effect on Entropy/Alpha/Anisotropy in Polarimetric SAR Decomposition. IEEE Trans. Geosci. Remote Sens., 46(10):3039-3052, Oct. 2008. Keyword(s): Monte Carlo methods, geophysical techniques, radar interferometry, radar polarimetry, remote sensing by radar, synthetic aperture radar, vegetationGerman Aerospace Research Center, JPL, Jet Propulsion Laboratory, L-band Advanced Land Observing Satellite, Monte Carlo simulation, airborne X-band polarimetric SAR, airborne interferometric SAR, alpha estimation, anisotropy estimation, bias removal algorithm, entropy estimation, forest, geophysical parameter estimation, grassland, multilook processing, phased array type L-band SAR, polarimetric SAR decomposition, scattering mechanisms, synthetic aperture radar, urban returns. [Abstract] [bibtex-entry]


  10. Lianlin Li and Fang Li. Ionosphere tomography based on spaceborne SAR. Advances in Space Research, 42(7):1187-1193, October 2008. Keyword(s): SAR Processing, Ionosphere tomography, Spaceborne SAR, Electron density isolines, Inverse scattering technique for multi-layered random surfaces, Method of moment, MoM, TEC, Total Electron Content, CT, computerized tomography. [Abstract] [bibtex-entry]


  11. Franz J. Meyer and J.B. Nicoll. Prediction, Detection, and Correction of Faraday Rotation in Full-Polarimetric L-Band SAR Data. IEEE Trans. Geosci. Remote Sens., 46(10):3076-3086, Oct. 2008. Keyword(s): Faraday effect, electromagnetic wave polarisation, ionospheric disturbances, ionospheric electromagnetic wave propagation, ionospheric techniques, radar polarimetry, radiowave propagation, remote sensing by radar, spaceborne radar, synthetic aperture radarAdvanced Land Observing Satellite, Faraday rotation correction, Faraday rotation detection, Faraday rotation estimation, Faraday rotation prediction, PALSAR, SAR data quality degradation, data continuity, full polarimetric L-band SAR data, geophysical parameter recovery accuracy, kilometer scale ionospheric disturbances, spaceborne L-band SAR instrument, synthetic aperture radar. [Abstract] [bibtex-entry]


  12. Franz Meyer, Richard Bamler, N. Jakowski, and Thomas Fritz. The Potential of Low-Frequency SAR Systems for Mapping Ionospheric TEC Distributions. IEEE_J_GRSL, 3(4):560-564, October 2006. Keyword(s): SAR Processing, electron density, ionosphere, ionospheric techniques, microwave propagation, synthetic aperture radar, SAR signal properties, broadband L-band SAR, broadband microwave radiation, correlation technique, dispersive media, group delay, interferometric technique, ionospheric TEC distribution mapping, ionospheric propagation effects, low-frequency SAR systems, phase advance, synthetic aperture radar, total electron content, two-frequency global positioning system observations, Delay systems, Dielectrics, Dispersion, Electrons, Ionosphere, L-band, Position measurement, Refractive index, Signal mapping, Synthetic aperture radar, Atmospheric effects, L-band SAR, SAR interferometry, correlation, dispersive media, ionosphere, synthetic aperture radar (SAR), total electron content (TEC). [Abstract] [bibtex-entry]


  13. Tazio Strozzi, Paolo Farina, Alessandro Corsini, Christian Ambrosi, Manfred Thüring, Johannes Zilger, Andreas Wiesmann, Urs Wegmuller, and Charles L. Werner. Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides, 2(3):193-201, 2005. Keyword(s): SAR Processing, PSI, Persistent Scatterer Interferometry, Landslides, Displacement, Landslide displacement investigation, SAR interferometry, L-band, Swiss and Italian Alps. [Abstract] [bibtex-entry]


Conference articles

  1. Othmar Frey, Charles Werner, Andrea Manconi, and Roberto Coscione. Mobile Mapping of Surface Displacements Using a Novel Compact UAV-Borne / Car-Borne InSAR System. In American Geophysical Union, Fall Meeting 2020, 2020. [Abstract] [bibtex-entry]


  2. Othmar Frey, Charles L. Werner, and Roberto Coscione. Car-borne and UAV-borne mobile mapping of surface displacements with a compact repeat-pass interferometric SAR system at L-band. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 274-277, 2019. Keyword(s): SAR Processing, Synthetic aperture radar (SAR), SAR interferometry, mobile mapping, car-borne SAR, UAV, airborne SAR, terrestrial radar interferometer, repeat-pass interferometry, differential interferometry, DInSAR, SAR imaging, focusing, back-projection, Time-Domain Back-Projection, TDBP, GPU, CUDA, interferometry, L-band, INS, GNSS, GPS. [Abstract] [bibtex-entry]


  3. Alberto Moreira, Gerhard Krieger, Irena Hajnsek, Kostas Papathanassiou, Michael Eineder, Francesco De Zan, Marwan Younis, and Marian Werner. Tandem-L: Monitoring the Earth's Dynamics with InSAR and Pol-InSAR. In Proc. PolInSAR, Frascati, Italy (ESA SP-668), January 2009. Keyword(s): Earth's Dynamics Monitoring, Tandem-L mission, advanced digital beamforming techniques, biomass inventories, glacier movement observations, global forest height, high data acquisition, high resolution SAR interferometry, innovative interferometric radar mission, millimetric displacements measurements, polarimetric radar mission, synthetic aperture radar, tectonic shifts, data acquisition, glaciology, radar interferometry, radar polarimetry, remote sensing by radar, synthetic aperture radar, tectonics, vegetation. [Abstract] [bibtex-entry]


  4. Thierry Michel and Scott Hensley. Wavenumber domain focusing of squinted SAR data with a curved orbit geometry. In Proc. 42nd Asilomar Conf. on Signals, Systems and Computers, pages 492-496, October 2008. Keyword(s): SAR Processing, omega-k, Range Migration Algorithm, Wavenumber Domain Algorithm, Curvilinear SAR, airborne SAR, SAR data, curved orbit geometry, squinted geometry, synthetic aperture radar, wavenumber domain focusing, synthetic aperture radar. [Abstract] [bibtex-entry]


  5. Charles Werner, Urs Wegmuller, Andreas Wiesmann, and Tazio Strozzi. Interferometric point target analysis with JERS-1 L-band SAR data. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 7, pages 4359-4361, July 2003. IEEE. Keyword(s): SAR Processing, Interferometry, SAR Interferometry, Persistent Scatterer Interferometry, PSI, Interferometric Point Target Analysis, IPTA, L-band, Atmospheric modeling, Deformable models, Phase estimation, Atmosphere, Testing, Surface topography, Azimuth, Remote sensing, Sensor phenomena and characterization, topography, synthetic aperture radar, spaceborne radar, remote sensing by radar, radiowave interferometry, geophysical techniques, subsidence, JERS-1 L-band SAR data, long-term coherence, surface deformation, Koga, Japan,. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:40:17 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html