BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'digital terrain'

Articles in journal or book chapters

  1. G. H. X. Shiroma and M. Lavalle. Digital Terrain, Surface, and Canopy Height Models From InSAR Backscatter-Height Histograms. IEEE Transactions on Geoscience and Remote Sensing, 58(6):3754-3777, June 2020. Keyword(s): backscatter, forestry, optical radar, radar imaging, radar interferometry, radar polarimetry, remote sensing by radar, synthetic aperture radar, vegetation, vegetation mapping, digital terrain, canopy height models, InSAR backscatter-height histogram, interferometric synthetic aperture radar backscatter-height histograms, single-look backscatter measurements, InSAR phase height, InSAR histogram, LiDAR waveforms, ground topography, full-polarimetric L-band uninhabited aerial vehicle synthetic aperture radar data, forest height, Histograms, Laser radar, Forestry, Vegetation mapping, Backscatter, Synthetic aperture radar, Digital elevation models (DEMs), forest height, interferometry, L-band, polarimetric synthetic aperture radar (SAR) interferometry (PolInSAR), polarimetry, SAR. [Abstract] [bibtex-entry]


  2. Maciej J. Soja, H.J. Persson, and Lars M.H. Ulander. Estimation of Forest Biomass From Two-Level Model Inversion of Single-Pass InSAR Data. IEEE Trans. Geosci. Remote Sens., 53(9):5083-5099, September 2015. Keyword(s): data acquisition, digital elevation models, forestry, radar interferometry, remote sensing by radar, synthetic aperture radar, vegetation, AD 2008, AD 2010, AD 2011, AD 2012, AD 2013, InSAR processing, Krycklan feature, Remningstorp feature, Swedish test site, VV-polarized TanDEM-X acquisition, aboveground biomass estimation, biomass predictor, canopy density, digital terrain model, forest biomass estimation, forest height, hemiboreal forest, northern Sweden, single-pass InSAR data, single-pass interferometric synthetic aperture radar data, southern Sweden, two-level model inversion, Biological system modeling, Biomass, Computational modeling, Correlation, Decorrelation, Estimation, Synthetic aperture radar, Aboveground biomass (AGB), TanDEM-X (TDM), canopy density, forest height, interferometric model, interferometric syntheticaperture radar (InSAR), two-level model (TLM). [Abstract] [bibtex-entry]


  3. Maciej J. Soja, H. Persson, and Lars M. H. Ulander. Estimation of Forest Height and Canopy Density From a Single InSAR Correlation Coefficient. IEEE Geosci. Remote Sens. Lett., 12(3):646-650, March 2015. Keyword(s): digital elevation models, geophysical image processing, parameter estimation, radar interferometry, remote sensing by radar, synthetic aperture radar, vegetation mapping, AD 2011 to 2013, VV-polarized bistatic-interferometric TanDEM-X image pairs, canopy density, forest height estimation, hemiboreal test site Remningstorp, high-resolution digital terrain model, single InSAR correlation coefficient, southern Sweden, synthetic aperture radar, two-level model, vegetation, Backscatter, Coherence, Laser radar, Remote sensing, Synthetic aperture radar, Time division multiplexing, Vegetation, Canopy density, TanDEM-X, forest height, interferometric model, interferometry, synthetic aperture radar (SAR), two-level model (TLM). [Abstract] [bibtex-entry]


  4. Felix Morsdorf, Othmar Frey, Erich Meier, Klaus I. Itten, and Britta Allgöwer. Assessment of the Influence of Flying Altitude and Scan Angle on Biophysical Vegetation Products Derived from Airborne Laser Scanning. International Journal of Remote Sensing, 29(5):1387 - 1406, March 2008. [Abstract] [bibtex-entry]


  5. Daniele Perissin. Validation of the Submetric Accuracy of Vertical Positioning of PSs in C-Band. IEEE Geosci. Remote Sens. Lett., 5(3):502-506, July 2008. Keyword(s): SAR Processing, Persistent Scatterer Interferometry, PSI, SAR Interferometry, InSAR, DInSAR, Interferometry, digital elevation models, geophysical signal processing, photogrammetry, radar interferometry, remote sensing by radar, synthetic aperture radar, terrain mapping, C-band, DEM, Envisat images, European Remote Sensing satellite, European Space Agency, Italy, Milan, Shuttle Radar Topography Mission, digital elevation models, digital terrain models, height estimate, multitrack PS DTM, permanent scatterers technique, photogrammetric technique, radar target displacement, spaceborne synthetic aperture radar interferometry, street level, submetric accuracy, target localization capability, urban area, vertical positioning, Interferometry, remote sensing, synthetic aperture radar (SAR);. [Abstract] [bibtex-entry]


  6. Didier Massonnet and Thierry Rabaute. Radar interferometry: limits and potential. IEEE Trans. Geosci. Remote Sens., 31(2):455-464, 1993. Keyword(s): SAR Processing, electromagnetic wave interferometry, geophysical techniques, image processing, remote sensing by radar, topography (Earth), accuracy, differential interferometry, digital terrain modeling, height restitution, image pair, image processing, orbital geometry, phase ambiguity, radar interferometry, topography, Geometrical optics, Instruments, Laser radar, Optical interferometry, Optical sensors, Radar antennas, Radar imaging, Radar interferometry, Spaceborne radar, Synthetic aperture radar. [Abstract] [bibtex-entry]


  7. H.A. Zebker and J. Villasenor. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens., 30(5):950-959, September 1992. Keyword(s): SAR Processing, geophysical techniques, radiowave interferometry, remote sensing by radar, synthetic aperture radar, Decorrelation, Temporal Decorrelation, topography (Earth), Oregon, United States, backscatter, decorrelation, digital terrain model generation, echo correlation statistics, forested area, global digital terrain map, interferometric radar echoes, radar interferometric technique, remote sensing, single synthetic aperture radar, surficial change, topographic mapping, unvegetated lava flows, vegetated surfaces, Decorrelation, Digital elevation models, Noise level, Propulsion, Radar antennas, Space technology, Spaceborne radar, Surface topography, Synthetic aperture radar, Terrain mapping. [Abstract] [bibtex-entry]


Conference articles

  1. Othmar Frey, Erich Meier, Daniel Nüesch, and Achim Roth. Geometric Error Budget Analysis for TerraSAR-X. In Proc. EUSAR 2004 - 5th European Conference on Synthetic Aperture Radar, Ulm, Germany, pages 513-516, May 2004. Keyword(s): SAR Processing, SAR Geocoding, Geocoding, Error Budget Analysis, TerraSAR-X, Atmospheric Correction, Atmospheric Path Delay, Ionosheric Path Delay, Antenna Gain Pattern Correction. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:39:36 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html