BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'optical radar'

Articles in journal or book chapters

  1. G. H. X. Shiroma and M. Lavalle. Digital Terrain, Surface, and Canopy Height Models From InSAR Backscatter-Height Histograms. IEEE Transactions on Geoscience and Remote Sensing, 58(6):3754-3777, June 2020. Keyword(s): backscatter, forestry, optical radar, radar imaging, radar interferometry, radar polarimetry, remote sensing by radar, synthetic aperture radar, vegetation, vegetation mapping, digital terrain, canopy height models, InSAR backscatter-height histogram, interferometric synthetic aperture radar backscatter-height histograms, single-look backscatter measurements, InSAR phase height, InSAR histogram, LiDAR waveforms, ground topography, full-polarimetric L-band uninhabited aerial vehicle synthetic aperture radar data, forest height, Histograms, Laser radar, Forestry, Vegetation mapping, Backscatter, Synthetic aperture radar, Digital elevation models (DEMs), forest height, interferometry, L-band, polarimetric synthetic aperture radar (SAR) interferometry (PolInSAR), polarimetry, SAR. [Abstract] [bibtex-entry]


  2. Matteo Pardini, Marivi Tello, Victor Cazcarra-Bes, K. P. Papathanassiou, and I. Hajnsek. L- and P-Band 3-D SAR Reflectivity Profiles Versus Lidar Waveforms: The AfriSAR Case. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10):3386-3401, October 2018. Keyword(s): SAR Processing, SAR Tomography, airborne radar, backscatter, forestry, geophysical techniques, optical radar, radar imaging, radar polarimetry, remote sensing by laser beam, remote sensing by radar, synthetic aperture radar, vegetation, vegetation mapping, NASA Land, Ice Sensor lidar datasets, AfriSAR campaign, LVIS data, plot field measurements, ground-to-volume power ratio, physical forest structure descriptors, vertical structure indices, 3-D radar reflectivity, LVIS profiles, P-band 3-D, AfriSAR case, P-band vertical backscattering profiles, synthetic aperture radar tomography, light detection, DLR F-SAR, tropical forest structure types, Forestry, Synthetic aperture radar, Laser radar, Radar tracking, L-band, Vegetation, Forest structure, full waveforms, light detection and ranging (lidar), SAR tomography (TomoSAR), synthetic aperture radar (SAR), tropical forest. [Abstract] [bibtex-entry]


  3. Marivi Tello-Alonso, Victor Cazcarra-Bes, Matteo Pardini, and K. Papathanassiou. Forest Structure Characterization From SAR Tomography at L-Band. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10):3402-3414, October 2018. Keyword(s): SAR Processing, SAR Tomography, forestry, optical radar, radar imaging, radar interferometry, radar polarimetry, remote sensing by laser beam, remote sensing by radar, synthetic aperture radar, vegetation mapping, 3-D forest monitoring, radar reflectivity, physical forest structure, tomographic SAR data, vertical structure index, inventory data, spatial distribution, experimental tomographic L-band data, vertical structure indices, vertical profiles, forest structure indices, forest structure characterization, SAR tomography, synthetic aperture radar remote sensing configurations, high spatial resolution, temporal resolution, tomographic SAR techniques, correlation coefficients, Forestry, Vegetation, Synthetic aperture radar, Tomography, Indexes, L-band, Forest structure, synthetic aperture radar, tomography. [Abstract] [bibtex-entry]


  4. Scott Hensley, D. Moller, S. Oveisgharan, T. Michel, and X. Wu. Ka-Band Mapping and Measurements of Interferometric Penetration of the Greenland Ice Sheets by the GLISTIN Radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6):2436-2450, June 2016. Keyword(s): Global Positioning System, geophysical image processing, hydrological techniques, ice, image segmentation, meteorological radar, optical radar, radar interferometry, snow, synthetic aperture radar, topography (Earth), Antarctica, Earth environment, GLISTIN elevation measurement, GLISTIN instrument, GLISTIN radar, Greenland ice sheet, Jakobshavn glacier area, Ka-band cross-track interferometric radar, Ka-band mapping, NASA GLISTIN Ka-band interferometric radar, NASA Wallop airborne terrain mapper lidar measurement, climate change, ice cap topography, ice surface topography, image mosaic, interferometric penetration, interferometric penetration measurement, interferometric radar mapping system, kinematic GPS survey measurement, lidar, optical system, swath topographic measurement, Ice, Instruments, Laser radar, Sea measurements, Snow, Surfaces, Glaciers, Ka-band, ice sheets, interferometry, penetration, radar. [Abstract] [bibtex-entry]


  5. Marco Lavalle and Scott Hensley. Extraction of Structural and Dynamic Properties of Forests From Polarimetric-Interferometric SAR Data Affected by Temporal Decorrelation. IEEE Trans. Geosci. Remote Sens., 53(9):4752-4767, September 2015. Keyword(s): SAR Processing, Decorrelation, Temporal Decorrelation, Gaussian processes, optical radar, radar imaging, radar interferometry, radar polarimetry, synthetic aperture radar, vegetation mapping, Gaussian-statistic motion model, Harvard Forest, L-band NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar, Laser Vegetation and Ice Sensor, Massachussetts, NASA lidar, RMoG model, RVoG model, USA, canopy elements, canopy motion, forest biomass estimation, forest dynamic property, forest property estimation, forest structural property, forest vertical structure, least square distance minimization, lidar-derived height, multiplicative factors, polarimetric channels, polarimetric-interferometric SAR data, polarimetric-interferometric coherence, polarimetric-interferometric radar image, random-motion-over-ground model, random-volume-over-ground model, temporal coherence, temporal decorrelation effect, tree height, volumetric coherence, volumetric decorrelation effect, wave polarization, Biomass, Coherence, Data models, Decorrelation, Radar, Vegetation, Decorrelation, interferometry, polarimetry. [Abstract] [bibtex-entry]


Conference articles

  1. Scott Hensley, E. Gurrola, Leif Harcke, M. Slade, K. Quirk, M. Srinivasan, C. Lee, Sang-Ho Yun, J. Jao, B. Wilson, E. De Jong, N. Marechal, L. Weintraub, R. Dickinson, R. Bloom, G. Karamyan, and A. Lilje. Lunar topographic mapping using a new high resolution mode for the GSSR radar. In Proc. IEEE Radar Conference, pages 464-469, May 2010. Keyword(s): Doppler image formation technique, Earth based radar interferometric measurement, Goldstone Solar System Radar, Moon topography mapping, autofocusing method, bandwidth 40 MHz, geodetic control, high resolution mode, interferograms, lidar topography maps, lunar topographic mapping, lunar topographic maps, range image formation technique, spotlight mode processing, Doppler radar, Moon, astronomical image processing, image resolution, optical radar, radar imaging, radar interferometry, radar resolution. [Abstract] [bibtex-entry]


  2. W.T.K. Johnson, P.A. Rosen, S. Hensley, and A. Freeman. Radar designs for the DESDynI mission. In IEEE Radar Conference, pages 1-3, May 2009. Keyword(s): DESDynI mission, InSAR, Lidar, SweepSAR, dual polarization, ecosystem structure, ice dynamics, interferometric radar design, near-polar orbit, quadpolarization, solid Earth, spacecraft, vegetation, electromagnetic wave polarisation, geophysical techniques, ice, optical radar, radar interferometry, synthetic aperture radar. [Abstract] [bibtex-entry]


  3. A. Donnellan, P. Rosen, J. Graf, A. Loverro, A. Freeman, R. Treuhaft, R. Oberto, Marc Simard, Eric J. Rignot, R. Kwok, Xiaoqing Pi, J.B. Blair, W. Abdalati, J. Ranson, H. Zebker, B. Hager, H. Shugart, M. Fahnestock, and R. Dubayah. Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI). In Proc. IEEE Aerospace Conf., pages 1-13, March 2008. Keyword(s): DESDynl mission, National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, biomass, cryosphere objectives, ecosystem function, ecosystem structure, ice dynamics, integrated L-band InSAR, multibeam Lidar mission, solid Earth, surface deformation, topography, vegetation structure, deformation, optical radar, synthetic aperture radar, topography (Earth), vegetation mapping. [Abstract] [bibtex-entry]


  4. A. Donnellan, P. Rosen, J. Ranson, and H. Zebker. Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI). In IEEE Int. Geoscience and Remote Sensing Symposium, IGARSS 2008, volume 3, pages 5-8, July 2008. Keyword(s): DESDynl mission, Deformation, Ecosystem Structure, and Dynamics of Ice, Earth Science Decadal Survey, National Research Council, biomass estimation, carbon cycle, cryosphere objectives, ecosystem function, integrated L-band InSAR, multibeam Lidar mission, solid Earth surface deformation, surface elevation changes, topography measure, vegetation structure, deformation, optical radar, radar interferometry, remote sensing by radar, topography (Earth), vegetation. [Abstract] [bibtex-entry]


Internal reports

  1. Report of the DESDynI Applications Workshop. Technical report, Version 1, April 2009. Keyword(s): DESDynI mission, BIOMASS mission, Earth explorer core mission candidate, P-band, forest area, forest biomass, forest disturbances, global maps, synthetic aperture radar, terrestrial carbon cycle, remote sensing by radar, spaceborne radar, DESDynl mission, Deformation, Ecosystem Structure, and Dynamics of Ice, Earth Science Decadal Survey, National Research Council, biomass estimation, carbon cycle, cryosphere objectives, ecosystem function, integrated L-band InSAR, multibeam Lidar mission, solid Earth surface deformation, surface elevation changes, topography measure, vegetation structure, deformation, optical radar, radar interferometry, remote sensing by radar, topography (Earth), vegetation. [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:24:19 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html