BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'biomass estimation'

Articles in journal or book chapters

  1. Albert R. Monteith and Lars M. H. Ulander. Temporal Survey of P- and L-Band Polarimetric Backscatter in Boreal Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10):3564-3577, October 2018. Keyword(s): SAR Tomography, backscatter, radar imaging, radar polarimetry, remote sensing by radar, spaceborne radar, synthetic aperture radar, vegetation mapping, temporal survey, L-band polarimetric backscatter, boreal forests, environmental conditions, seasonal variations, backscattered radar signal, biomass retrieval scheme, synthetic aperture radar data, electromagnetic scattering mechanisms, biomass estimation algorithms, L-band SAR missions, temporal changes, HV-polarized P, L-band radar backscatter, boreal forest site, environmental parameters, mature Norway spruce, above-ground biomass, approximately 250 tons/ha, BorealScat tower-based scatterometer, L-band backscatter, HH/VV backscatter ratio, average backscatter, double-bounce scattering, severe temporal decorrelation, P-band temporal coherence, mass 250.0 ton, time 5.0 min, noise figure 4.0 dB to 10.0 dB, Synthetic aperture radar, L-band, Backscatter, Biomass, Antenna arrays, Coherence, Backscatter, boreal forest, L-band, P-band, synthetic aperture radar (SAR), temporal coherence, time series. [Abstract] [bibtex-entry]


  2. Astor T. Caicoya, Matteo Pardini, Irena Hajnsek, and Konstantinos P. Papathanassiou. Forest Above-Ground Biomass Estimation From Vertical Reflectivity Profiles at L-Band. IEEE Geosci. Remote Sens. Lett., 12(12):2379-2383, December 2015. Keyword(s): SAR Processing, SAR Tomography, L-band, Capon, forestry, vegetation mapping, L-band reflectivity profiles, SAR tomography, forest above-ground biomass estimation, forest stand densities, height measurements, root-mean-square error, vertical forest structure information, vertical radar reflectivity profiles, vertical reflectivity profiles, Biomass, Estimation, Image color analysis, L-band, Remote sensing, Synthetic aperture radar, Forest allometry, L-band, forest biomass, synthetic aperture radar (SAR) tomography, vertical forest structure, vertical reflectivity profiles. [Abstract] [bibtex-entry]


  3. Marco Lavalle and Scott Hensley. Extraction of Structural and Dynamic Properties of Forests From Polarimetric-Interferometric SAR Data Affected by Temporal Decorrelation. IEEE Trans. Geosci. Remote Sens., 53(9):4752-4767, September 2015. Keyword(s): SAR Processing, Decorrelation, Temporal Decorrelation, Gaussian processes, optical radar, radar imaging, radar interferometry, radar polarimetry, synthetic aperture radar, vegetation mapping, Gaussian-statistic motion model, Harvard Forest, L-band NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar, Laser Vegetation and Ice Sensor, Massachussetts, NASA lidar, RMoG model, RVoG model, USA, canopy elements, canopy motion, forest biomass estimation, forest dynamic property, forest property estimation, forest structural property, forest vertical structure, least square distance minimization, lidar-derived height, multiplicative factors, polarimetric channels, polarimetric-interferometric SAR data, polarimetric-interferometric coherence, polarimetric-interferometric radar image, random-motion-over-ground model, random-volume-over-ground model, temporal coherence, temporal decorrelation effect, tree height, volumetric coherence, volumetric decorrelation effect, wave polarization, Biomass, Coherence, Data models, Decorrelation, Radar, Vegetation, Decorrelation, interferometry, polarimetry. [Abstract] [bibtex-entry]


  4. Shaun Quegan and M.R. Lomas. The Interaction Between Faraday Rotation and System Effects in Synthetic Aperture Radar Measurements of Backscatter and Biomass. Geoscience and Remote Sensing, IEEE Transactions on, 53(8):4299-4312, August 2015. Keyword(s): Faraday effect, backscatter, geophysical techniques, synthetic aperture radar, European space agency BIOMASS mission, P-band radar, backscatter synthetic aperture radar measurement, biomass estimation error, biomass synthetic aperture radar measurement, channel imbalance deviation magnitude, distortion term amplitude, distortion term phase, faraday rotation, first-order analysis, long-wavelength space-based radar, polarimetric backscattering coefficient, polarimetric scattering matrix measurement, power-law relation, signal-to-noise ratio, stringent condition, system distortion, Backscatter, Biomass, Crosstalk, Distortion measurement, Faraday effect, Noise, Scattering, Biomass, Faraday rotation, calibration, long-wavelength radar, polarimetric measurements, system distortion. [Abstract] [bibtex-entry]


  5. Maciej J. Soja, H.J. Persson, and Lars M.H. Ulander. Estimation of Forest Biomass From Two-Level Model Inversion of Single-Pass InSAR Data. IEEE Trans. Geosci. Remote Sens., 53(9):5083-5099, September 2015. Keyword(s): data acquisition, digital elevation models, forestry, radar interferometry, remote sensing by radar, synthetic aperture radar, vegetation, AD 2008, AD 2010, AD 2011, AD 2012, AD 2013, InSAR processing, Krycklan feature, Remningstorp feature, Swedish test site, VV-polarized TanDEM-X acquisition, aboveground biomass estimation, biomass predictor, canopy density, digital terrain model, forest biomass estimation, forest height, hemiboreal forest, northern Sweden, single-pass InSAR data, single-pass interferometric synthetic aperture radar data, southern Sweden, two-level model inversion, Biological system modeling, Biomass, Computational modeling, Correlation, Decorrelation, Estimation, Synthetic aperture radar, Aboveground biomass (AGB), TanDEM-X (TDM), canopy density, forest height, interferometric model, interferometric syntheticaperture radar (InSAR), two-level model (TLM). [Abstract] [bibtex-entry]


  6. Scott Hensley, S. Oveisgharan, S. Saatchi, M. Simard, R. Ahmed, and Z. Haddad. An Error Model for Biomass Estimates Derived From Polarimetric Radar Backscatter. IEEE_J_GRS, 52(7):4065-4082, July 2014. Keyword(s): air pollution, carbon capture and storage, remote sensing by radar, vegetation, above ground biomass, basic imaging physics, biomass estimation accuracy, carbon flux measurement, carbon storage, disturbance quantification, ecosystem processes, error model, forest carbon inventories, forested areas, ground carbon, instrument parameter, mission parameter, notional Earth observing mission, polarimetric radar backscatter, radar polarimetric measurements, regrowth quantification, remote sensing measurements, Backscatter, Biological system modeling, Biomass, Radar measurements, Radar polarimetry, Signal to noise ratio, Backscatter error model, forest biomass, polarimetry, synthetic aperture radar (SAR). [bibtex-entry]


  7. Ross F. Nelson, Peter Hyde, Patrick Johnson, Bomono Emessiene, Marc L. Imhoff, Robert Campbell, and Wilson Edwards. Investigating RaDAR-LiDAR synergy in a North Carolina pine forest. Remote Sensing of Environment, 110(1):98-108, September 2007. Keyword(s): SAR Processing, Biomass, Forest, VHFRaDAR, profiling LiDAR, biomass, RaDAR-LiDAR synergy, VHFSAR DATA, SMALL-FOOTPRINT LIDAR, AIRBORNE LASER DATA, STEM VOLUME, STAND CHARACTERISTICS, AERIAL-PHOTOGRAPHY, VEGETATION BIOMASS, CONIFEROUS FOREST, BOREAL FORESTS, SCANNER DATA. [Abstract] [bibtex-entry]


Conference articles

  1. A. Donnellan, P. Rosen, J. Ranson, and H. Zebker. Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI). In IEEE Int. Geoscience and Remote Sensing Symposium, IGARSS 2008, volume 3, pages 5-8, July 2008. Keyword(s): DESDynl mission, Deformation, Ecosystem Structure, and Dynamics of Ice, Earth Science Decadal Survey, National Research Council, biomass estimation, carbon cycle, cryosphere objectives, ecosystem function, integrated L-band InSAR, multibeam Lidar mission, solid Earth surface deformation, surface elevation changes, topography measure, vegetation structure, deformation, optical radar, radar interferometry, remote sensing by radar, topography (Earth), vegetation. [Abstract] [bibtex-entry]


  2. W. - M. Boerner. Recent Advances in Extra-Wide-Band Polarimetry, Interferometry and Polarimetric Interferometry in Synthetic Aperture Remote Sensing and its Applications. In IEE Proceedings - Radar, Sonar and Navigation, volume 150, pages 113-124, June 2003. Keyword(s): SAR Processing, Interferometry, Pol-InSAR, RFI Suppression, Extra-WideBand SAR, WideBand SAR. [Abstract] [bibtex-entry]


  3. Athanasios Potsis, Andreas Reigber, Emmanouil Alivizatos, Alberto Moreira, and Nikolaos K. Uzunoglou. Comparison of Chirp Scaling and Wavenumber Domain Algorithms for Airborne Low-Frequency SAR. In Francesco Posa, editor, SAR Image Analysis, Modeling, and Techniques V, volume 4883, pages 25-36, March 2002. Keyword(s): SAR Processing, Chirp Scaling Algorithm, Extended Chirp Scaling Algorithm, omega-k, Range Migration Algorithm, Wavenumber Domain Algorithm, Comparison of Algorithms, P-Band, Wideband SAR, Airborne SAR. [Abstract] [bibtex-entry]


  4. David Small, Francesco Holecz, Erich Meier, and Daniel Nüesch. Absolute radiometric correction in rugged terrain: A plea for integrated radar brightness. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 1, pages 330-332, 1998. Keyword(s): geophysical signal processing, geophysical techniques, radar imaging, remote sensing by radar, spaceborne radar, synthetic aperture radar, absolute radiometric correction, biomass estimation, geophysical measurement technique, integrated radar brightness, integrative faceted heteromorphic approach, land surface, multimode SAR imagery, multimode image comparison, radar remote sensing, radiometric normalisation, rugged terrain, spaceborne radar, synthetic aperture radar, terrain mapping, terrain-induced variation. [Abstract] [bibtex-entry]


Internal reports

  1. Report of the DESDynI Applications Workshop. Technical report, Version 1, April 2009. Keyword(s): DESDynI mission, BIOMASS mission, Earth explorer core mission candidate, P-band, forest area, forest biomass, forest disturbances, global maps, synthetic aperture radar, terrestrial carbon cycle, remote sensing by radar, spaceborne radar, DESDynl mission, Deformation, Ecosystem Structure, and Dynamics of Ice, Earth Science Decadal Survey, National Research Council, biomass estimation, carbon cycle, cryosphere objectives, ecosystem function, integrated L-band InSAR, multibeam Lidar mission, solid Earth surface deformation, surface elevation changes, topography measure, vegetation structure, deformation, optical radar, radar interferometry, remote sensing by radar, topography (Earth), vegetation. [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:39:19 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html