BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'electromagnetic wave propagation'

Books and proceedings

  1. Eugene F. Knott, John F. Shaeffer, and Michael T. Tuley. Radar Cross Section (2nd Edition). 2004. Keyword(s): radar cross section, RCS, electromagnetic wave absorption, radar cross-sections, electromagnetic wave scattering, scattering mechanisms, complex body, radar cross section reduction methods, test targets, techniques for measuring absorber property, RCS prediction techniques, background information, simple body, scattering characteristics, RCS behavior, electromagnetic wave propagation, electromagnetic waves theory, Radar theory. [Abstract] [bibtex-entry]


Articles in journal or book chapters

  1. Urs Wegmuller, Charles Werner, Othmar Frey, Christophe Magnard, and Tazio Strozzi. Reformulating the Split-Spectrum Method to Facilitate the Estimation and Compensation of the Ionospheric Phase in SAR Interferograms. Procedia Computer Science, pp 318-325, 2018. Keyword(s): SAR Processing, Ionosphere, Ionospheric Path Delay, split-beam interferometry, SBI, ionospheric electromagnetic wave propagation, ionospheric techniques, radar interferometry, remote sensing by radar, split beam interferograms, along track ground displacement estimation, azimuth spectrum band pass filtering, directional scattering identification, ionospheric path delay estimation, long baseline pair coherence estimation, split beam interferometry, Azimuth, Band pass filters, Coherence, Delay, Ionosphere, Time series analysis. [bibtex-entry]


  2. G. Gomba and F. De Zan. Bayesian Data Combination for the Estimation of Ionospheric Effects in SAR Interferograms. IEEE_J_GRS, 55(11):6582-6593, November 2017. Keyword(s): SAR Processing, split-spectrum, split-spectrum interferometry, split-band, split-band interferometry, Bayes methods, Faraday effect, fractals, inverse problems, ionospheric electromagnetic wave propagation, radar imaging, radar interferometry, remote sensing by radar, synthetic aperture radar, Bayesian data combination, Bayesian inverse problem, Faraday rotation method, SAR images, SAR interferograms, advanced land observing satellite phased array type L-band SAR L-band images, azimuth mutual shifts, data-based model parameter estimation, differential ionospheric phase screen, error source, estimation accuracy, information sources, interferometric pair images, ionosphere turbulence, ionospheric effects estimation, ionospheric propagation path delay, physically realistic fractal modeling, range variations, sensitive azimuth shifts, simple split-spectrum method, small-scale azimuth variations, synthetic aperture radar interferograms, Azimuth, Bayes methods, Estimation, Extraterrestrial measurements, Faraday effect, Ionosphere, Synthetic aperture radar, Ionosphere estimation, SAR ionospheric effects, interferometric synthetic aperture radar (SAR), methods\textquoteright combination. [Abstract] [bibtex-entry]


  3. D. Li, M. Rodriguez-Cassola, P. Prats-Iraola, M. Wu, and A. Moreira. Reverse Backprojection Algorithm for the Accurate Generation of SAR Raw Data of Natural Scenes. IEEE Geoscience and Remote Sensing Letters, 14(11):2072-2076, November 2017. Keyword(s): data acquisition, geophysical image processing, remote sensing by radar, synthetic aperture radar, tropospheric electromagnetic wave propagation, reverse backprojection algorithm, SAR raw data, natural scenes, SAR image formation sibling, multistatic SAR missions, synthetic aperture radar mission concepts, geosynchronous SAR missions, observation geometry, acquisition strategy, atmospheric propagation, Synthetic aperture radar, Low earth orbit satellites, Azimuth, Atmospheric modeling, Standards, Algorithm design and analysis, Data models, Azimuth variation, backprojection algorithm, geosynchronous (GEO) SAR, raw data simulation, synthetic aperture radar (SAR), terrain observation with progressive scan (TOPS), tropospheric propagation. [Abstract] [bibtex-entry]


  4. Christopher R. Mannix, David P. Belcher, and Paul S. Cannon. Measurement of Ionospheric Scintillation Parameters From SAR Images Using Corner Reflectors. IEEE Trans. Geosci. Remote Sens., 55(12):6695-6702, December 2017. Keyword(s): SAR Processin, Ionosphere, Ionospheric Scintillation, Global Positioning System, ionospheric electromagnetic wave propagation, radar imaging, radiowave propagation, synthetic aperture radar, Ascension Island, L-band, PALSAR-2, SAR PSF, SAR images, analytical theory, corner reflector, corner reflectors, ionospheric scintillation parameters, ionospheric turbulence parameters p, phase scintillation, point spread function, simultaneous GPS measurements, size 5.0 m, spotlight mode, Extraterrestrial measurements, Ionosphere, Radar tracking, Satellites, Spaceborne radar, Synthetic aperture radar, Ionosphere, ionospheric electromagnetic propagation, synthetic aperture radar. [Abstract] [bibtex-entry]


  5. G. Gomba, A. Parizzi, F. De Zan, M. Eineder, and R. Bamler. Toward Operational Compensation of Ionospheric Effects in SAR Interferograms: The Split-Spectrum Method. IEEE_J_GRS, 54(3):1446-1461, March 2016. Keyword(s): SAR Processing, split-spectrum, split-spectrum interferometry, split-band, split-band interferometry, ionospheric electromagnetic wave propagation, synthetic aperture radar, L-band interferograms, L-band synthetic aperture radar interferometric pairs, SAR interferograms, advanced land observing satellite phased-array, differential ionospheric path delay, geophysical processes, ground deformation signals, ionospheric effects operational compensation, ionospheric phase, split-spectrum method, tropospheric path delay, Accuracy, Azimuth, Coherence, Delays, Estimation, Ionosphere, Synthetic aperture radar, Interferometric synthetic aperture radar (InSAR), ionosphere estimation, split spectrum, synthetic aperture radar (SAR) ionospheric effects. [Abstract] [bibtex-entry]


  6. Ze Yu, Zhou Li, and Shusen Wang. An Imaging Compensation Algorithm for Correcting the Impact of Tropospheric Delay on Spaceborne High-Resolution SAR. IEEE Transactions on Geoscience and Remote Sensing, 53(9):4825-4836, September 2015. Keyword(s): SAR Processing, SAR Focusing, Azimuth Focusing, Autofocus, Motion Compensation, atmospheric electromagnetic wave propagation, delays, geophysical image processing, image filtering, image resolution, radar cross-sections, radar imaging, remote sensing by radar, spaceborne radar, synthetic aperture radar, troposphere, imaging compensation algorithm, tropospheric delay, spaceborne high-resolution SAR, atmospheric refraction, electromagnetic signalpropagation speed, propagation path delay, geometrical straight-line path, spaceborne synthetic aperture radar, imaging filter, rectilinear propagation, residual phase, focusing quality, focusing performance, spaceborne SAR echo model, range delay coefficient, European Geostationary Navigation Overlay Service model, zenith delay, Niell mapping function, looking direction, range compensation, classical imaging, azimuth compensation, Delays, Synthetic aperture radar, Atmospheric modeling, Focusing, Data models, Real-time systems, High-resolution imaging, phase compensation, synthetic aperture radar (SAR), tropospheric delay, High-resolution imaging, phase compensation. [Abstract] [bibtex-entry]


  7. Lorenzo Iannini and Andrea Monti Guarnieri. Atmospheric Phase Screen in Ground-Based Radar: Statistics and Compensation. IEEE Geoscience and Remote Sensing Letters, 8(3):537-541, May 2011. Keyword(s): atmospheric electromagnetic wave propagation, atmospheric humidity, atmospheric pressure, atmospheric techniques, atmospheric temperature, radiowave propagation, remote sensing by radar, APS removal, Bolzano, Italy, atmospheric humidity, atmospheric phase screen evaluation, atmospheric phase screen removal, atmospheric pressure, atmospheric temperature, compensation approach, ground based radar, initial calibration step, meteorological parameters, time varying delay statistics, Atmospheric modeling, Calibration, Coherence, Delay, Humidity, Radar, Refractive index, Atmospheric artifact compensation, differential interferometry, ground-based radar (GB-RADAR). [Abstract] [bibtex-entry]


  8. Michael Jehle, Maurice Rüegg, Lukas Zuberbühler, David Small, and Erich Meier. Measurement of Ionospheric Faraday Rotation in Simulated and Real Spaceborne SAR Data. IEEE Trans. Geosci. Remote Sens., 47(5):1512-1523, May 2009. Keyword(s): SAR Processing, Ionosphere, ALOS PALSAR, Advanced Land Observing Satellite, Earth's magnetic field, PALSAR data, Phased Array L-band Synthetic Aperture Radar, focused radar images, frequency-modulated electromagnetic wave traverse, ionospheric Faraday Rotation measurement, radar polarimetry, range-compressed, signal chirp bandwidth effects, signal path delays, spaceborne SAR data, spaceborne synthetic aperture radar, total electron content, TEC, Faraday effect, ionospheric electromagnetic wave propagation, radar polarimetry, radar signal processing, remote sensing by radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  9. Franz J. Meyer and J.B. Nicoll. Prediction, Detection, and Correction of Faraday Rotation in Full-Polarimetric L-Band SAR Data. IEEE Trans. Geosci. Remote Sens., 46(10):3076-3086, Oct. 2008. Keyword(s): Faraday effect, electromagnetic wave polarisation, ionospheric disturbances, ionospheric electromagnetic wave propagation, ionospheric techniques, radar polarimetry, radiowave propagation, remote sensing by radar, spaceborne radar, synthetic aperture radarAdvanced Land Observing Satellite, Faraday rotation correction, Faraday rotation detection, Faraday rotation estimation, Faraday rotation prediction, PALSAR, SAR data quality degradation, data continuity, full polarimetric L-band SAR data, geophysical parameter recovery accuracy, kilometer scale ionospheric disturbances, spaceborne L-band SAR instrument, synthetic aperture radar. [Abstract] [bibtex-entry]


Conference articles

  1. G. Gomba, F. De Zan, and A. Parizzi. Ionospheric Phase Screen and Ionospheric Azimuth Shift Estimation Combining the Split-Spectrum and Multi-Squint Methods. In Proc. EUSAR 2016: 11th European Conf. Synthetic Aperture Radar, pages 1-4, June 2016. Keyword(s): SAR Processing, split-spectrum, split-spectrum interferometry, split-band, split-band interferometry, ionospheric electromagnetic wave propagation, synthetic aperture radar, L-band interferograms, L-band synthetic aperture radar interferometric pairs, SAR interferograms, advanced land observing satellite phased-array, differential ionospheric path delay, geophysical processes, ground deformation signals, ionospheric effects operational compensation, ionospheric phase, split-spectrum method, tropospheric path delay, Accuracy, Azimuth, Coherence, Delays, Estimation, Ionosphere, Synthetic aperture radar, Interferometric synthetic aperture radar (InSAR), ionosphere estimation, split spectrum, synthetic aperture radar (SAR) ionospheric effects. [bibtex-entry]


  2. G. Gomba, X. Y. Cong, and M. Eineder. Correction of ionospheric and tropospheric path delay for L-band interferograms. In Proc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pages 310-313, July 2015. Keyword(s): SAR Processing, split-spectrum, split-spectrum interferometry, split-band, split-band interferometry, ionospheric electromagnetic wave propagation, ionospheric techniques, refractive index, remote sensing by radar, synthetic aperture radar, tropospheric electromagnetic wave propagation, weather forecasting, L-band interferograms, SAR data, differential atmospheric path delay, direct integration method, error source, geophysical processes, ground deformation signal, height-dependent tropospheric effects, ionospheric path delay correction, nominal value, numerical weather prediction data, radio wave delay, radio wave propagation, refractivity index variation, slant range distance, split-spectrum method, stratified delay, topography signal, tropospheric path delay correction, Atmospheric measurements, Delays, Dispersion, Ionosphere, L-band, Synthetic aperture radar, InSAR, SAR ionospheric effects, ionosphere estimation. [bibtex-entry]


  3. G. Gomba and F. De Zan. Estimation of ionospheric height variations during an aurora event using multiple semi-focusing levels. In Proc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pages 4065-4068, July 2015. Keyword(s): SAR Processing, split-spectrum, split-spectrum interferometry, split-band, split-band interferometry, aurora, ionospheric electromagnetic wave propagation, ionospheric techniques, remote sensing by radar, synthetic aperture radar, SAR images, SAR interferograms, aurora event, integrated-azimuth-shifts method, ionosphere scintillation, ionosphere vertical profile, ionospheric effects, ionospheric height variation estimation, ionospheric phase screen, multiple semifocusing levels, normal ionospheric state, Azimuth, Estimation, Hafnium, Ionosphere, Satellites, InSAR, SAR ionospheric effects, ionosphere estimation, ionosphere scintillation. [bibtex-entry]


  4. G. Gomba, M. Eineder, A. Parizzi, and R. Bamler. High-resolution estimation of ionospheric phase screens through semi-focusing processing. In Proc. IEEE Geoscience and Remote Sensing Symp, pages 17-20, July 2014. Keyword(s): SAR Processing, split-spectrum, split-spectrum interferometry, split-band, split-band interferometry, geophysical techniques, ionospheric electromagnetic wave propagation, radar imaging, radar interferometry, remote sensing by radar, synthetic aperture radar, SAR images, blurring, coherence, decorrelation, delta-k split-band interferometry method, high-resolution estimation, ionosphere irregularities, ionospheric azimuth effect, ionospheric phase screens, semifocusing processing, synthetic aperture generate shift, turbulent ionosphere, Apertures, Azimuth, Coherence, Estimation, Focusing, Ionosphere, Synthetic aperture radar, InSAR, SAR ionospheric effects, ionosphere estimation, ionosphere scintillation. [Abstract] [bibtex-entry]


  5. Giorgio Gomba, Michael Eineder, Thomas Fritz, and Alessandro Parizzi. Simulation of ionospheric effects on L-band synthetic aperture radar images. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 4463-4466, July 2013. Keyword(s): deformation, geophysical techniques, ionospheric electromagnetic wave propagation, radar imaging, radiowave propagation, remote sensing by radar, synthetic aperture radar, L-band mission, L-band synthetic aperture radar images, arbitrary ionospheric state, deformation measurements, disrupted raw images, focused images, ionosphere effect simulation, ionosphere estimation methods, ionosphere-free real SAR images, propagation delay errors, Abstracts, Ice, Ionosphere, Monitoring, Ionosphere, Ionospheric effects simulation, SAR Interferometry errors. [Abstract] [bibtex-entry]


  6. Urs Wegmuller, Tazio Strozzi, and Charles Werner. Ionospheric path delay estimation using split-beam interferometry. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 3631-3634, July 2012. Keyword(s): SAR Processing, Ionosphere, Ionospheric Path Delay, split-beam interferometry, SBI, ionospheric electromagnetic wave propagation, ionospheric techniques, radar interferometry, remote sensing by radar, L-band split beam interferograms, along track ground displacement estimation, azimuth spectrum band pass filtering, directional scattering identification, ionospheric path delay estimation, long baseline pair coherence estimation, split beam interferometry, Azimuth, Band pass filters, Coherence, Delay, Ionosphere, L-band, Time series analysis, Split-beam interferometry, ionosphere, ionospheric path delay. [Abstract] [bibtex-entry]


  7. R. Brcic, A. Parizzi, M. Eineder, R. Bamler, and F. Meyer. Ionospheric effects in SAR interferometry: An analysis and comparison of methods for their estimation. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 1497-1500, July 2011. Keyword(s): ionospheric electromagnetic wave propagation, ionospheric techniques, radar interferometry, synthetic aperture radar, C-band system, L-band ALOS-PALSAR acquisitions, L-band system, P-band system, SAR signal, X-band frequencies, dispersive effects, ionospheric compensation, ionospheric effects, phase error, repeat-pass SAR interferometry, spaceborne SAR systems, topographic retrieval, wideband interferometry, Azimuth, Bandwidth, Delay, Estimation, Interferometry, Ionosphere, Synthetic aperture radar, delta-k, ionosphere, split-spectrum, wideband interferometry. [Abstract] [bibtex-entry]


  8. R. Brcic, A. Parizzi, M. Eineder, R. Bamler, and F. Meyer. Estimation and compensation of ionospheric delay for SAR interferometry. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 2908-2911, July 2010. Keyword(s): compensation, data acquisition, ionospheric electromagnetic wave propagation, radar interferometry, radiowave propagation, remote sensing by radar, spaceborne radar, synthetic aperture radar, L-band ALOS-PALSAR acquisition, L-band system, SAR interferometry, SAR signal propagation, X-band frequency, dispersive effect, ionospheric delay compensation, ionospheric delay estimation, phase error, spaceborne SAR system, synthetic aperture rada, Azimuth, Bandwidth, Delay, Estimation, Frequency estimation, Ionosphere, L-band, delta-k, ionosphere, split-spectrum, wideband interferometry. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:39:41 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html