BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'residual phase'

Books and proceedings

  1. Annelie Wyholt. SAR Image Focus Errors due to Incorrect Geometrical Positioning in Fast Factorized Back-Projection. Licentiatavhandling, Chalmers University of Technology, 2008. Keyword(s): SAR Processing, Autofocus, Time-Domain Back-Projection, TDBP, FFBP, SAR image processing, antenna path parameters, autofocus, fast factorized back-projection, radar imaging, synthetic aperture radar. [Abstract] [bibtex-entry]


Thesis

  1. Muhammad Adnan Siddique. SAR tomography as an add-on to persistent scatterer interferometry for improved deformation coverage. PhD thesis, ETH Zurich, 2018. Keyword(s): SAR Processing, SAR Tomography, deformation analysis in urban and alpine areas, persistent scatterer interferometry, PSI, atmospheric phase corrections, radar interferometry, differential SAR tomography, SAR interferometry, InSAR, SAR, SAR tomography, Synthetic aperture radar (SAR), deformation, SAR signal processing, Radar signal processing, SAR Interferometry, InSAR, interferometric stacking, persistent scatterer interferometry, PSI, spaceborne SAR radar interferometry, spaceborne radar, X-Band, TerraSAR-X, synthetic aperture radar, tomography, 3-D point cloud retrieval, SAR tomography based 3-D point cloud extraction, high-resolution spaceborne SAR, Cosmo Skymed, interferometric stack, layover scenario case, persistent scatterer interferometry, PSI, point-like scatterer, processing approach, Alpine Remote Sensing, Spaceborne radar, Synthetic aperture radar, Three-dimensional displays, Tomography, 3-D point cloud, SAR interferometry, Cosmo SkyMed, Matter Valley, Switzerland, Alps, mountainous terrain, layover. [Abstract] [bibtex-entry]


Articles in journal or book chapters

  1. Simone Baffelli, Othmar Frey, and Irena Hajnsek. Geostatistical Analysis and Mitigation of the Atmospheric Phase Screens in Ku-Band Terrestrial Radar Interferometric Observations of an Alpine Glacier. IEEE Transactions on Geoscience and Remote Sensing, 58(11):7533-7556, November 2020. Keyword(s): Gamma Portable Radar Interferometer, GPRI, Pol-GPRI, Atmospheric modeling, Spaceborne radar, Atmospheric measurements, Radar interferometry, Delays, Phase measurement, Atmospheric modeling, atmospheric phase screen (APS), differential radar interferometry, terrestrial radar interferometry, TRI. [Abstract] [bibtex-entry]


  2. Muhammad Adnan Siddique, Urs Wegmuller, Irena Hajnsek, and Othmar Frey. SAR Tomography as an Add-On to PSI: Detection of Coherent Scatterers in the Presence of Phase Instabilities. Remote Sensing, 10(7):1014, 2018. Keyword(s): SAR Processing, SAR tomography, Synthetic aperture radar (SAR), SAR Interferometry, InSAR, interferometric stacking, persistent scatterer interferometry, PSI, spaceborne SAR radar interferometry, spaceborne radar, X-Band, TerraSAR-X, synthetic aperture radar, tomography, 3-D point cloud retrieval, SAR tomography based 3-D point cloud extraction, high-resolution spaceborne SAR, TerraSAR-X, Barcelona, interferometric stack, layover scenario case, persistent scatterer interferometry, PSI, point-like scatterer, processing approach, Urban Remote Sensing, Spaceborne radar, Synthetic aperture radar, Three-dimensional displays, Tomography, 3-D point cloud, SAR interferometry, deformation, displacement, subsidence, detection, urban deformation monitoring, radar interferometry, displacement mapping, spaceborne SAR, differential interferometry, differential tomography, coherent scatterer detection. [Abstract] [bibtex-entry]


  3. S. Tebaldini, F. Rocca, M. Mariotti d'Alessandro, and L. Ferro-Famil. Phase Calibration of Airborne Tomographic SAR Data via Phase Center Double Localization. IEEE Trans. Geosci. Remote Sens., 54(3):1775-1792, March 2016. Keyword(s): SAR Processing, SAR tomography, Apertures, Calibration, Focusing, Sensors, Surfaces, Synthetic aperture radar, Tomography, Distributed media, phase calibration, reconstruction algorithms, synthetic aperture radar (SAR), tomography. [Abstract] [bibtex-entry]


  4. Michael I. Duersch and David G. Long. Analysis of time-domain back-projection for stripmap SAR. International Journal of Remote Sensing, 36(8):2010-2036, 2015. Keyword(s): SAR Processing, FMCW, Time-Domain Back-Projection, TDBP, LFMCW, Azimuth Focusing, Motion Compensation, Interferometry, SAR Interferometry, Airborne SAR. [Abstract] [bibtex-entry]


  5. Ze Yu, Zhou Li, and Shusen Wang. An Imaging Compensation Algorithm for Correcting the Impact of Tropospheric Delay on Spaceborne High-Resolution SAR. IEEE Transactions on Geoscience and Remote Sensing, 53(9):4825-4836, September 2015. Keyword(s): SAR Processing, SAR Focusing, Azimuth Focusing, Autofocus, Motion Compensation, atmospheric electromagnetic wave propagation, delays, geophysical image processing, image filtering, image resolution, radar cross-sections, radar imaging, remote sensing by radar, spaceborne radar, synthetic aperture radar, troposphere, imaging compensation algorithm, tropospheric delay, spaceborne high-resolution SAR, atmospheric refraction, electromagnetic signalpropagation speed, propagation path delay, geometrical straight-line path, spaceborne synthetic aperture radar, imaging filter, rectilinear propagation, residual phase, focusing quality, focusing performance, spaceborne SAR echo model, range delay coefficient, European Geostationary Navigation Overlay Service model, zenith delay, Niell mapping function, looking direction, range compensation, classical imaging, azimuth compensation, Delays, Synthetic aperture radar, Atmospheric modeling, Focusing, Data models, Real-time systems, High-resolution imaging, phase compensation, synthetic aperture radar (SAR), tropospheric delay, High-resolution imaging, phase compensation. [Abstract] [bibtex-entry]


  6. Pau Prats-Iraola, Marc Rodriguez-Cassola, Francseco De Zan, Pau L�pez-Dekker, Rolf Scheiber, and Andreas Reigber. Efficient Evaluation of Fourier-Based SAR Focusing Kernels. IEEE Geoscience and Remote Sensing Letters, 11(9):1489-1493, Sep. 2014. Keyword(s): airborne radar, image resolution, image sensors, numerical analysis, optical focusing, optical transfer function, radar imaging, spaceborne radar, synthetic aperture radar, transient response, geometry, transfer function, airborne SAR sensor, spaceborne SAR sensor, IRF, 2D point target spectrum simulation, numerical analysis, bistatic SAR image resolution, spaceborne SAR image resolution, compact analytic expression, hyperbolic range history, residual phase error, focused impulse response function, SAR image formation, synthetic aperture radar image formation, Fourier-based SAR focusing kernel, Kernel, Synthetic aperture radar, Focusing, Azimuth, Transfer functions, Geometry, Spaceborne radar, SAR processing, SAR simulation, SAR spectrum, spotlight SAR, synthetic aperture radar (SAR), SAR processing, SAR simulation, SAR spectrum, spotlight SAR, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  7. Karlus A. Câmara de Macedo and Rolf Scheiber. Precise topography- and aperture-dependent motion compensation for airborne SAR. IEEE Geosci. Remote Sens. Lett., 2(2):172-176, 2005. Keyword(s): SAR Processing, PTA-MoComp, Postprocessing, Motion Compensation, Topography-Based Motion Compensation, Chirp Scaling Algorithm, Extended Chirp Scaling Algorithm, fast Fourier transform-based postprocessing methodology, FFT, D-InSAR, German Aerospace Center, DLR, airborne repeat-pass interferometry, differential interferometry, geometric fidelity, motion errors, phase accuracy, residual phase errors, topographic heights, Topography, DEM, Terrain, wide beamwidth, Airborne SAR, ESAR, P-Band, differential interferometry, Interferometry, motion errors. [Abstract] [bibtex-entry]


  8. R. Lanari, O. Mora, M. Manunta, J. J. Mallorqui, P. Berardino, and E. Sansosti. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens., 42(7):1377-1386, July 2004. Keyword(s): radar resolution, radiowave interferometry, remote sensing by radar, singular value decomposition, synthetic aperture radar, terrain mapping, topography (Earth), DIFSAR interferograms, European Remote Sensing satellites, atmospheric phase artifacts, differential SAR interferometry, digital elevation model, geodetic measurements, ground deformation, large-scale deformations, multilook data, residual phase components, single-look data, singular value decomposition, small-baseline subset, spatial resolutions, synthetic aperture radar, temporal evolution, topographic errors, Buildings, Digital elevation models, Interferometry, Large-scale systems, Phase detection, Phase estimation, Singular value decomposition, Spatial resolution, Synthetic aperture radar, Testing, Ground deformations, SAR, SAR interferometry, synthetic aperture radar. [Abstract] [bibtex-entry]


Conference articles

  1. Roberto Coscione, Irena Hajnsek, and Othmar Frey. Trajectory Uncertainty in Repeat-Pass SAR Interferometry: A Case Study. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 338-341, 2019. Keyword(s): SAR Processing, Synthetic aperture radar (SAR), SAR interferometry, mobile mapping, car-borne SAR, UAV, airborne SAR, terrestrial radar interferometer, repeat-pass interferometry, differential interferometry, DInSAR, SAR imaging, INS, GNSS, GPS, Trajectory Uncertainty. [Abstract] [bibtex-entry]


  2. U. Herter, H. Schmaljohann, and T. Fickenscher. Autofocus performance on multi channel SAS images in the presence of overlapping phase centers. In OCEANS 2016 MTS/IEEE Monterey, pages 1-6, September 2016. Keyword(s): geophysical image processing, image restoration, optical focusing, sonar imaging, synthetic aperture sonar, DPCA, RPC, SPGA focusing, autofocus performance, blurred images, data driven micronavigation, displaced phase center antenna, echo signals, multichannel SAS images, navigation data, overlapping phase centers, raw echo data, redundant phase centers, residual phase errors, side lobe levels, strip-map phase gradient autofocus, synthetic aperture images, synthetic aperture sonar, Apertures, Approximation algorithms, Sonar navigation, Synthetic aperture sonar, Transmitters, aperture sonar, autofocus, multi-channel, strip-map. [Abstract] [bibtex-entry]


  3. O.O. Bezvesilniy, I. M. Gorovyi, and D. M. Vavriv. Estimation of phase errors in SAR data by Local-Quadratic map-drift autofocus. In Proc. Int. Radar Symp., pages 376-381, 2012. Keyword(s): SAR Processing, Autofocus, SAR Autofocus, MoComp, Motion Compensation, Map-Drift Autofocus, airborne radar, radar imaging, synthetic aperture radar, SAR data, SAR images, X-band airborne SAR system, arbitrary residual phase error, local-quadratic map-drift autofocus, phase error estimation, quadratic errors, small data blocks, uncompensated phase errors, Antennas, Azimuth, Bandwidth, Doppler effect, Measurement uncertainty, Radar, Trajectory, autofocus, map-drift, motion compensation, motion errors, synthetic aperture radar. [Abstract] [bibtex-entry]


  4. Charles V. Jakowatz and Daniel E. Wahl. Correction of propagation-induced defocus effects in certain spotlight-mode SAR collections. In Edmund G. Zelnio and Frederick D. Garber, editors, , volume 6237, pages 62370I, 2006. SPIE. Keyword(s): SAR Processing, Polar Format Algorithm, PFA, Atmospheric Influence, Phase Gradient Algorithm, PGA, Autofocus, Residual Phase Errors, Residual Error, Spotlight SAR, Spotlight-mode data. [bibtex-entry]


  5. Karlus A. Câmara de Macedo, Christian Andres, and Rolf Scheiber. On the requirements of SAR processing for airborne differential interferometry. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 4, pages 2693-2696, July 2005. Keyword(s): SAR Processing, PTA-MoComp, Postprocessing, Motion Compensation, Topography-Based Motion Compensation, Chirp Scaling Algorithm, Extended Chirp Scaling Algorithm, fast Fourier transform-based postprocessing methodology, FFT, D-InSAR, German Aerospace Center, DLR, airborne repeat-pass interferometry, differential interferometry, geometric fidelity, motion errors, phase accuracy, residual phase errors, topographic heights, Topography, DEM, Terrain, wide beamwidth, Airborne SAR, ESAR. [Abstract] [bibtex-entry]


  6. Carole E. Nahum. Autofocusing using multiscale local correlation. In Proc. SPIE, volume 3497, pages 21-30, 1998. Keyword(s): SAR Processing, Autofocus, SAR Autofocus, MoComp, Motion Compensation, Map-Drift Autofocus, airborne radar, radar imaging, synthetic aperture radar, SAR data, SAR images, X-band airborne SAR system, arbitrary residual phase error, local-quadratic map-drift autofocus, phase error estimation, quadratic errors, small data blocks, uncompensated phase errors, Antennas, Azimuth, Bandwidth, Doppler effect, Measurement uncertainty, Radar, Trajectory, autofocus, map-drift, motion compensation, motion errors, synthetic aperture radar. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:40:58 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html