BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'Greenland'

Articles in journal or book chapters

  1. Heming Liao, Franz J. Meyer, Bernd Scheuchl, Jeremie Mouginot, Ian Joughin, and Eric Rignot. Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions. Remote Sensing of Environment, 209:166-180, 2018. Keyword(s): Synthetic aperture radar, SAR interferometry, Ice velocity, Range split spectrum, Data stacking, Ionosphere effect, Ionosphere correction. [Abstract] [bibtex-entry]


  2. F. Banda, J. Dall, and S. Tebaldini. Single and Multipolarimetric P-Band SAR Tomography of Subsurface Ice Structure. IEEE Transactions on Geoscience and Remote Sensing, 54(5):2832-2845, May 2016. Keyword(s): glaciology, remote sensing by radar, synthetic aperture radar, multipolarimetric P-band SAR tomography, subsurface ice structure, multipolarization synthetic aperture radar, glaciers, ice sheets, Earth Explorer mission BIOMASS, IceSAR 2012, TomoSAR techniques, southwest of Greenland, cryospheric remote sensing, Synthetic aperture radar, Ice, Tomography, Estimation, Image resolution, Scattering, BIOMASS, cryosphere, Greenland, synthetic aperture radar (SAR), tomography, BIOMASS, cryosphere, Greenland, synthetic aperture radar (SAR), tomography. [Abstract] [bibtex-entry]


  3. Scott Hensley, D. Moller, S. Oveisgharan, T. Michel, and X. Wu. Ka-Band Mapping and Measurements of Interferometric Penetration of the Greenland Ice Sheets by the GLISTIN Radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6):2436-2450, June 2016. Keyword(s): Global Positioning System, geophysical image processing, hydrological techniques, ice, image segmentation, meteorological radar, optical radar, radar interferometry, snow, synthetic aperture radar, topography (Earth), Antarctica, Earth environment, GLISTIN elevation measurement, GLISTIN instrument, GLISTIN radar, Greenland ice sheet, Jakobshavn glacier area, Ka-band cross-track interferometric radar, Ka-band mapping, NASA GLISTIN Ka-band interferometric radar, NASA Wallop airborne terrain mapper lidar measurement, climate change, ice cap topography, ice surface topography, image mosaic, interferometric penetration, interferometric penetration measurement, interferometric radar mapping system, kinematic GPS survey measurement, lidar, optical system, swath topographic measurement, Ice, Instruments, Laser radar, Sea measurements, Snow, Surfaces, Glaciers, Ka-band, ice sheets, interferometry, penetration, radar. [bibtex-entry]


  4. Richard M. Goldstein and Charles L. Werner. Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25(21):4035-4038, 1998. Keyword(s): SAR Processing, SAR Interferometry, Interferometry, Goldstein-Werner filter, adaptive filter, adaptive interferogram filtering. [Abstract] [bibtex-entry]


  5. Johan J. Mohr, Niels Reeh, and Soren N. Madsen. Three-dimensional glacial flow and surface elevation measured with radar interferometry. Nature, 391(6664):273-276, January 1998. Keyword(s): SAR Processing, Interferometry, SAR interferometry, differential SAR interferometry, DInSAR, Glacier velocity, glacial flow. [Abstract] [bibtex-entry]


  6. R. Kwok and M.A. Fahnestock. Ice sheet motion and topography from radar interferometry. IEEE Trans. Geosci. Remote Sens., 34(1):189-200, January 1996. Keyword(s): SAR Processing, Interferometry, SAR interferometry, differential SAR interferometry, DInSAR, Displacement, Surface Displacement, glaciology, hydrological techniques, radar applications, radar imaging, remote sensing by radar, spaceborne radar, synthetic aperture radar, Greenland, SAR method, flow, geophysical measurement technique, glaciology, hydrology, ice sheet motion, motion, polar ice sheet, radar interferometry, radar remote sensing, repeat pass ERS-1 interferogram, surface displacement field, topography, velocity field, Data mining, Ice surface, Laboratories, Propulsion, Radar interferometry, Satellites, Space technology, Streaming media, Surface topography, Synthetic aperture radar. [Abstract] [bibtex-entry]


  7. Richard M. Goldstein, Hermann Engelhardt, Barclay Kamb, and Richard M. Frolich. Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application to an Antarctic Ice Stream. Science, 262(5139):1525-1530, 1993. Keyword(s): SAR Processing, Interferometry, SAR interferometry, differential SAR interferometry, DInSAR, Displacement, Surface Displacement, glaciology, hydrological techniques, radar applications, radar imaging, remote sensing by radar, spaceborne radar, synthetic aperture radar, Greenland, SAR method, flow, geophysical measurement technique, glaciology, hydrology, ice sheet motion. [Abstract] [bibtex-entry]


Conference articles

  1. H. Liao and F. J. Meyer. Ionospheric effect correction of ice motion mapping using interferometric synthetic aperture radar. In Proc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pages 6502-6504, July 2016. Keyword(s): adaptive filters, geophysical signal processing, glaciology, ice, ionosphere, radar interferometry, remote sensing by radar, synthetic aperture radar, AD 1990, Antarctica, C-band ERS1-2, Envisat ASAR, Greenland, InSAR-based ionospheric correction, L-band ALOS 1-2 PALSAR SAR data, Radarsat-1-2, Sentinel-1, X band TerraSAR-X, adaptive filter technique, automatic phase unwrapping error correction, coregistration technique, differential ionospheric phase signal, error correction algorithm, filter-based method, ice mass balance, ice motion analysis, ice motion mapping, ice motion monitoring, ice sheet, ice velocity, interferogram, interferometric synthetic aperture radar, ionospheric effect correction, ionospheric error, ionospheric phase delay, sea level rise, split spectrum technique, Antarctica, Ice, Ionosphere, L-band, Monitoring, Sea level, Synthetic aperture radar. [bibtex-entry]


  2. O. Ponce, R. Scheiber, P. Prats, I. Hajnsek, and A. Reigber. Multi-dimensional airborne holographic SAR tomography reconstruction for glaciers at L-/P-band. In Proc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pages 9-12, July 2016. Keyword(s): geophysical image processing, glaciology, hydrological techniques, image reconstruction, remote sensing by radar, solid modelling, synthetic aperture radar, 2-D image arc-pattern, 2-D image circular pattern, 3-D imaging reconstructions, Greenland, HoIoSAR campaign, HoloSAR mode, K-Transect, circular synthetic aperture, cryosphere, fast factorized back-projection, fully polarimetric data, glacier structures, glacier vertical profile, ice sheet vertical profile, ice structures, multidimensional airborne holographic SAR tomography reconstruction, vertical synthetic aperture, Apertures, Ice, Image resolution, L-band, Synthetic aperture radar, Tomography, Cryosphere, Fast Factorized Back-Projection (FFBP), Glaciers, Holographic SAR Tomography (HoloSAR), Polarimetric Synthetic Aperture Radar (PolSAR). [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:39:59 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html