Publications about 'radar design'

Articles in journal or book chapters

  1. Paolo Ghelfi, Francesco Laghezza, Filippo Scotti, Giovanni Serafino, Amerigo Capria, Sergio Pinna, Daniel Onori, Claudio Porzi, Mirco Scaffardi, Antonio Malacarne, Valeria Vercesi, Emma Lazzeri, Fabrizio Berizzi, and Antonella Bogoni. A fully photonics-based coherent radar system. Nature, 507(7492):341-345, 2014. Keyword(s): Radar, Photonics, Photonics-based radar, radar design. [Abstract] [bibtex-entry]

  2. S. Feng and J. Chen. Low-angle reflectivity modeling of land clutter. IEEE Geoscience and Remote Sensing Letters, 3(2):254-258, April 2006. Keyword(s): least squares approximations, radar clutter, reflectivity, remote sensing by radar, terrain mapping, complex system design, ground based radar design, inductive reasoning, least squares method, low angle radar targets, low angle reflectivity, mean reflectivity model, radar land clutter modeling, radar surface clutter backscattering, Backscatter, Frequency, Parameter estimation, Polarization, Predictive models, Radar clutter, Radar scattering, Reflectivity, Rough surfaces, Surface roughness, Least squares (LS) methods, radar clutter, radar scattering, radar terrain factors. [Abstract] [bibtex-entry]

Conference articles

  1. X. Xu, C. A. Baldi, J. De Bleser, Y. Lei, S. Yueh, and D. Esteban-Fernandez. Multi-Frequency Tomography Radar Observations of Snow Stratigraphy at Fraser During SnowEx. In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, pages 6269-6272, July 2018. Keyword(s): CW radar, FM radar, geophysical signal processing, hydrological techniques, radar polarimetry, radar signal processing, remote sensing by radar, snow, signal processing algorithm, snow free image, snow density, ground snow pit measurement, radar design, snow layer, multiple viewing positions, radar echo, tomography technique, radar channel, three-dimensional variability, fully polarimetric frequency-modulated continuous-wave radar, triple-frequency, 2017 NASA SnowEx campaign, Earth's terrestrial snow-covered regions, multiyear airborne snow campaign, Fraser, snow stratigraphy, multifrequency tomography radar observations, frequency 17.2 GHz, size 30.0 cm, frequency 9.6 GHz, frequency 13.5 GHz, Snow, Tomography, Synthetic aperture radar, Radar polarimetry, Spaceborne radar, Radar imaging, tomography, snow, FMCW radar, SWE. [Abstract] [bibtex-entry]

  2. W.T.K. Johnson, P.A. Rosen, S. Hensley, and A. Freeman. Radar designs for the DESDynI mission. In IEEE Radar Conference, pages 1-3, May 2009. Keyword(s): DESDynI mission, InSAR, Lidar, SweepSAR, dual polarization, ecosystem structure, ice dynamics, interferometric radar design, near-polar orbit, quadpolarization, solid Earth, spacecraft, vegetation, electromagnetic wave polarisation, geophysical techniques, ice, optical radar, radar interferometry, synthetic aperture radar. [Abstract] [bibtex-entry]

  3. Matthew Braunstein, James M. Ralston, and David A. Sparrow. Signal processing approaches to radio frequency interference (RFI) suppression. In Dominick A. Giglio, editor, Algorithms for Synthetic Aperture Radar Imagery, volume 2230, pages 190-208, 1994. SPIE. Keyword(s): SAR Processing, RFI Suppression, Ultra-Wideband SAR, Airborne SAR. [Abstract] [bibtex-entry]



Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.

Last modified: Mon Feb 1 16:40:50 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .

This document was translated from BibTEX by bibtex2html