BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'snow layer'

Articles in journal or book chapters

  1. Helmut Rott, Stefan Scheiblauer, Jan Wuite, Lukas Krieger, Dana Floricioiu, Paola Rizzoli, Ludivine Libert, and Thomas Nagler. Penetration of interferometric radar signals in Antarctic snow. The Cryosphere, 15(9):4399-4419, September 2021. Keyword(s): SAR Interferometry, Snow, Arctic Snow. [Abstract] [bibtex-entry]


  2. Badreddine Rekioua, Matthieu Davy, Laurent Ferro-Famil, and Stefano Tebaldini. Snowpack permittivity profile retrieval from tomographic SAR data. Comptes Rendus Physique, 18(1):57-65, 2017. Keyword(s): Snowpack, snow permittivity, SAR, SAR tomography, GB-SAR, ground-based SAR, Time-domain back-projection, TDBP. [Abstract] [bibtex-entry]


  3. C. Lin, B. Rommen, N. Floury, D. Schüttemeyer, M. W. J. Davidson, M. Kern, A. Kontu, J. Lemmetyinen, J. Pulliainen, A. Wiesmann, C. L. Werner, C. Mätzler, M. Schneebeli, M. Proksch, and T. Nagler. Active Microwave Scattering Signature of Snowpack---Continuous Multiyear SnowScat Observation Experiments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(8):3849-3869, August 2016. Keyword(s): remote sensing by radar, snow, snowpack active microwave scattering signature, multiyear SnowScat observation experiment, European Space Agency SnowScat instrument, aperture scatterometer, gamma remote sensing AG, AD 2009 02, Weissfluhjoch, Davos, Switzerland, alpine snowpack, snowpack physical characterization, Sodankyla, Finland, AD 2009 11, Finnish Meteorological Institute, Lapland, passive microwave observation, winter season, time-domain snow profiling experiment, snow microstructure, snow metamorphism, snow depth, snow-water-equivalent, frequency 9.15 GHz to 17.9 GHz, Snow, Instruments, Microstructure, Spaceborne radar, Backscatter, Microwave radiometry, Microwave backscatter, radar remote sensing, scatterometer, snow microstructure, snowpack, snow-water-equivalent (SWE), time-domain profiling. [Abstract] [bibtex-entry]


  4. Martin Schneebeli and Jerome B. Johnson. A constant-speed penetrometer for high-resolution snow stratigraphy. Annals of Glaciology, 26:107-111, 1998. Keyword(s): snow, snow micro pen, snow stratigraphy. [Abstract] [bibtex-entry]


Conference articles

  1. Marcel Stefko, Othmar Frey, and Irena Hajnsek. Snow Characterization at Ku-Band with a Bistatic Polarimetric Ground-Based Radar. In IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, pages 4256-4259, July 2022. [Abstract] [bibtex-entry]


  2. X. Xu, C. A. Baldi, J. De Bleser, Y. Lei, S. Yueh, and D. Esteban-Fernandez. Multi-Frequency Tomography Radar Observations of Snow Stratigraphy at Fraser During SnowEx. In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, pages 6269-6272, July 2018. Keyword(s): CW radar, FM radar, geophysical signal processing, hydrological techniques, radar polarimetry, radar signal processing, remote sensing by radar, snow, signal processing algorithm, snow free image, snow density, ground snow pit measurement, radar design, snow layer, multiple viewing positions, radar echo, tomography technique, radar channel, three-dimensional variability, fully polarimetric frequency-modulated continuous-wave radar, triple-frequency, 2017 NASA SnowEx campaign, Earth's terrestrial snow-covered regions, multiyear airborne snow campaign, Fraser, snow stratigraphy, multifrequency tomography radar observations, frequency 17.2 GHz, size 30.0 cm, frequency 9.6 GHz, frequency 13.5 GHz, Snow, Tomography, Synthetic aperture radar, Radar polarimetry, Spaceborne radar, Radar imaging, tomography, snow, FMCW radar, SWE. [Abstract] [bibtex-entry]


  3. Badreddine Rekioua, Matthieu Davy, and Laurent Ferro-Famil. Snowpack characterization using SAR tomography: experimental results of the AlpSAR campaign. In Radar Conference (EuRAD), 2015 European, pages 33-36, Sept 2015. Keyword(s): SAR Processing, Tomography, SAR tomography, Antennas, Ice, Lenses, Refractive index, Snow, Ground-based SAR. [Abstract] [bibtex-entry]


  4. Stefano Tebaldini and Laurent Ferro-Famil. High resolution three-dimensional imaging of a snowpack from ground-based SAR data acquired at X and Ku Band. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 77-80, July 2013. Keyword(s): SAR Processing, SAR Tomography, Snow, Snowpack, X-band, Ku-band, remote sensing by radar, snow, synthetic aperture radar, 2D synthetic array, 3D imaging, AD 2010 12, Col de Porte, French Alps, GB SAR campaign, Ground Based SAR data, MeteoFrance, ice layer, snowpack, Backscatter, Focusing, Ice, Snow, Synthetic aperture radar. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:25:00 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html