BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'radar line of sight'

Articles in journal or book chapters

  1. Michele Manunta, Claudio De Luca, Ivana Zinno, Francesco Casu, Mariarosaria Manzo, Manuela Bonano, Adele Fusco, Antonio Pepe, Giovanni Onorato, Paolo Berardino, Prospero De Martino, and Riccardo Lanari. The Parallel SBAS Approach for Sentinel-1 Interferometric Wide Swath Deformation Time-Series Generation: Algorithm Description and Products Quality Assessment. IEEE Transactions on Geoscience and Remote Sensing, 57(9):6259-6281, Sep. 2019. [Abstract] [bibtex-entry]


  2. Pooja Mahapatra, Sami Samie Esfahany, Hans van der Marel, and Ramon F. Hanssen. On the Use of Transponders as Coherent Radar Targets for SAR Interferometry. IEEE Trans. Geosci. Remote Sens., 52(3):1869-1878, March 2014. Keyword(s): SAR Processing, Global Positioning System, geomorphology, geophysical equipment, radar interferometry, reliability, remote sensing by radar, synthetic aperture radar, terrain mapping, transponders, vegetation, ERS-2, Envisat, SAR interferometry, coherent radar targets, controlled environment, corner reflectors, double-difference transponder phase measurements, empirical precision range, field experiments, geometric variations, global positioning system, ground deformation monitoring, landslide monitoring, maintenance-related degradation, operational performance, passive devices, radar line of sight, radar transponders, reliability, transponder-InSAR observations, validation measurements, validation tests, vegetated nonurbanized areas, Corner reflector, geodesy, interferometry, measurement errors, persistent scatterer, phase measurement, quality control, synthetic aperture radar, transponder. [Abstract] [bibtex-entry]


  3. M. Eineder, C. Minet, P. Steigenberger, Xiaoying Cong, and T. Fritz. Imaging Geodesy: Toward Centimeter-Level Ranging Accuracy With TerraSAR-X. IEEE Transactions on Geoscience and Remote Sensing, 49(2):661-671, February 2011. Keyword(s): TerraSAR-X radar image, corner reflector technique, geodesy imaging method, glacier measurement, image correlation technique, large-scale Earth surface displacement, solid Earth tide motion vector, spaceborne radar amplitude image, synthetic aperture radar image correlation technique, tropospheric water vapor variation, volcano measurement, geodesy, geophysical image processing, geophysical techniques, ionosphere, radar imaging, remote sensing by radar, synthetic aperture radar, tides, troposphere. [Abstract] [bibtex-entry]


  4. Howard A. Zebker, Paul A. Rosen, Richard M. Goldstein, Andrew Gabriel, and Charles L. Werner. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. Journal of Geophysical Research: Solid Earth, 99(B10):19617-19634, 1994. Keyword(s): SAR Processing, Interferometry, SAR interferometry, differential SAR interferometry, DInSAR, Deformation Mapping, Deformation Monitoring, ERS-1, Displacement, Surface Displacement, Surface Deformation, Spaceborne SAR, C-band, Earthquake, Landers earthquake, Fault Slip, Remote sensing, Seismic instruments and networks, Earthquake source observations, Earthquake interaction, forecasting, and prediction. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:24:34 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html