Publications about 'reliability'


  1. Pooja S. Mahapatra. Geodetic network design for InSAR: Application to ground deformation monitoring. PhD thesis, TU Delft, 2015. Keyword(s): SAR Processing, InSAR Persistent Scatterer Interferometry, PSI, GNSS, Transponder, Geodetic Network. [Abstract] [bibtex-entry]

Articles in journal or book chapters

  1. Ladina Steiner, Michael Meindl, Christoph Marty, and Alain Geiger. Impact of GPS Processing on the Estimation of Snow Water Equivalent Using Refracted GPS Signals. IEEE Transactions on Geoscience and Remote Sensing, 58(1):123-135, January 2020. Keyword(s): Global Positioning System, remote sensing, snow, Swiss Alps, GPS processing parameters, SWE estimation performance, elevation-dependent weighting scheme, elevation cutoff angles, sub-snow GPS, temporal reliability, systematic overview, seasons time period, GPS refractometry, sub-snow global positioning system antennas, snowpack modeling, remote sensing data, snow hydrological monitoring, weather conditions, continuous SWE quantification, automated SWE quantification, situ snow water equivalent estimation, global navigation satellite system antennas, refracted GPS signals, daily estimates, hourly SWE estimation, Global Positioning System, Snow, Estimation, Global navigation satellite system, Antennas, Satellites, Delays, Global navigation satellite system (GNSS), global positioning system (GPS), GPS refractometry, snow, snow water equivalent (SWE), sub-snow. [Abstract] [bibtex-entry]

  2. Zahra Sadeghi, Mohammad Javad Valadan Zoej, and Jan-Peter Muller. Combination of Persistent Scatterer Interferometry and Single-Baseline Polarimetric Coherence Optimisation to Estimate Deformation Rates with Application to Tehran Basin. PFG -- Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 85(5):327-340, December 2017. [Abstract] [bibtex-entry]

  3. Pooja S. Mahapatra, Sami Samie Esfahany, and Ramon F. Hanssen. Geodetic Network Design for InSAR. IEEE Trans. Geosci. Remote Sens., 53(7):3669-3680, July 2015. Keyword(s): SAR Processing, InSAR, GNSS, persistent scatterer interferometry, covariance matrices, deformation, geodesy, geomorphology, geophysical techniques, network theory (graphs), radar interferometry, remote sensing by radar, synthetic aperture radar, InSAR measurement, coherent target device deployment, covariance matrices, criterion matrix, deformation signal, densification measurement, geodesic network design methodology, ground deformation measurement, interferometric synthetic aperture radar, network optimization, optimal ground location, Covariance matrices, Deformable models, Geophysical measurements, Redundancy, Synthetic aperture radar, Coherent target, compact active transponder, corner reflector, criterion matrix, economy, geodesy, interferometric synthetic aperture radar (InSAR), network design, precision, reliability. [Abstract] [bibtex-entry]

  4. R. Iglesias, D. Monells, X. Fabregas, J. J. Mallorqui, A. Aguasca, and C. Lopez-Martinez. Phase Quality Optimization in Polarimetric Differential SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 52(5):2875-2888, May 2014. Keyword(s): geophysical techniques, optimisation, radar interferometry, radar polarimetry, remote sensing by radar, synthetic aperture radar, ALOS, DInSAR processing, DInSAR techniques, RADARSAT-2, TerraSAR-X, advanced land observing satellite, amplitude dispersion case, amplitude dispersion maps, classical single-polarimetric approach, coherence case, differential SAR interferometry, differential synthetic aperture radar interferometry, final DInSAR result density, final DInSAR result reliability, fully polarimetric data unavailability, ground-based SAR fully polarimetric data, interferometric technique merging, orbital SAR fully polarimetric data, phase quality optimization, pixel candidate number threefold, pixel phase quality, pixel selection process, polarimetric capabilities, polarimetric differential SAR interferometry, polarimetric optimization techniques, polarimetric technique merging, polarimetrically optimized coherence, satellite launch, single-polarimetric case, Amplitude dispersion optimization, coherence optimization, differential synthetic aperture radar (SAR) interferometry (DInSAR), polarimetric DInSAR (PolDInSAR), polarimetry. [Abstract] [bibtex-entry]

  5. Pooja Mahapatra, Sami Samie Esfahany, Hans van der Marel, and Ramon F. Hanssen. On the Use of Transponders as Coherent Radar Targets for SAR Interferometry. IEEE Trans. Geosci. Remote Sens., 52(3):1869-1878, March 2014. Keyword(s): SAR Processing, Global Positioning System, geomorphology, geophysical equipment, radar interferometry, reliability, remote sensing by radar, synthetic aperture radar, terrain mapping, transponders, vegetation, ERS-2, Envisat, SAR interferometry, coherent radar targets, controlled environment, corner reflectors, double-difference transponder phase measurements, empirical precision range, field experiments, geometric variations, global positioning system, ground deformation monitoring, landslide monitoring, maintenance-related degradation, operational performance, passive devices, radar line of sight, radar transponders, reliability, transponder-InSAR observations, validation measurements, validation tests, vegetated nonurbanized areas, Corner reflector, geodesy, interferometry, measurement errors, persistent scatterer, phase measurement, quality control, synthetic aperture radar, transponder. [Abstract] [bibtex-entry]

  6. A. Rucci, A. Ferretti, A. Monti Guarnieri, and F. Rocca. Sentinel-1 SAR interferometry applications: The outlook for sub millimeter measurements. Remote Sensing of Environment, 120:156 - 163, 2012. Note: The Sentinel Missions - New Opportunities for Science. Keyword(s): Synthetic Aperture Radar (SAR), INSAR, Permanent scatterers, Ground deformation. [Abstract] [bibtex-entry]

  7. Karlus A. Câmara de Macedo, Rolf Scheiber, and Alberto Moreira. An Autofocus Approach for Residual Motion Errors With Application to Airborne Repeat-Pass SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 46(10):3151-3162, October 2008. Keyword(s): SAR Processing, Autofocus, Residual Motion Errors, WPCA, Weighted PCA, Weighted Phase Curvature Autofocus, Phase Curvature Autofocus, PCA, Phase Gradient Autofocus, PGA, Repeat-Pass Interferometry, Interferometry, InSAR, D-InSAR, Differential SAR Interferometry, E-SAR, airborne SAR, Baseline Calibration, Tomography, SAR Tomography, deformation, geophysical techniques, synthetic aperture radar, topography (Earth)E-SAR system, German Aerospace Center, airborne repeat-pass SAR Interferometry, autofocus algorithm, autofocus techniques, high-precision navigation system, image processing, interferometric-phase accuracy, phase curvature autofocus, residual motion errors, synthetic-aperture-radar, terrain deformations measurement, weighted least squares phase estimation. [Abstract] [bibtex-entry]

  8. G. Tavernier, J. P. Granier, C. Jayles, P. Sengenes, and F. Rozo. The current evolutions of the DORIS system. Advances in Space Research, 31(8):1947-1952, 2003. Keyword(s): DORIS, Orbit, Precise Orbit, Accuracy, ENVISAT, ASAR. [Abstract] [bibtex-entry]

Conference articles

  1. Hui Wang, Yongjiang Xia, Man Jiang, and Lingzhen Kong. Research on W-band FMCW Rail-SAR system with high resolution. In 2017 18th International Radar Symposium (IRS), pages 1-6, June 2017. Keyword(s): SAR Processing, W-Band, FM radar, millimetre wave radar, radar imaging, radar resolution, synthetic aperture radar, RD imaging algorithm, W-band FMCW rail-SAR system, high resolution imaging, small target imaging, system parameter simulation, Antenna arrays, Azimuth, Imaging, Rails, Signal resolution, Simulation, Synthetic aperture radar. [Abstract] [bibtex-entry]

  2. Sabine Rödelsperger and Adriano Meta. MetaSensing's FastGBSAR: ground based radar for deformation monitoring. In Proc. SPIE, volume 9243, pages 924318-924318-8, 2014. Keyword(s): SAR Processing, FastGBSAR, GBSAR, InSAR, Ground-based radar, Ground-based SAR, deformation measurement, displacement, subsidence, terrestrial radar interferometry, mass movements, surface deformation, Dike monitoring, Dike failure. [Abstract] [bibtex-entry]



Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.

Last modified: Mon Feb 1 16:40:57 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .

This document was translated from BibTEX by bibtex2html