BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'autofocus algorithm'

Thesis

  1. Hayden J. Callow. Signal Processing for Synthetic Aperture Sonar Image Enhancement. PhD thesis, University of Canterbury, 2003. Keyword(s): SAR Processing, Autofocus, Phase Gradient Autofocus, Stripmap, Stripmap PGA, Stripmap Phase Gradient Autofocus, SAS, Synthetic Aperture Sonar. [Abstract] [bibtex-entry]


Articles in journal or book chapters

  1. Y. Huang, F. Liu, Z. Chen, J. Li, and W. Hong. An Improved Map-Drift Algorithm for Unmanned Aerial Vehicle SAR Imaging. IEEE Geoscience and Remote Sensing Letters, pp 1-5, 2020. Keyword(s): Synthetic aperture radar, Unmanned aerial vehicles, Apertures, Azimuth, Trajectory, Electronics packaging, Doppler effect, Map-drift algorithm (MDA), motion compensation (MOCO), random sample consensus (RANSAC), unmanned aerial vehicle synthetic aperture radar (UAV SAR) imaging.. [Abstract] [bibtex-entry]


  2. Jamal Saeedi and Karim Faez. A back-projection autofocus algorithm based on flight trajectory optimization for synthetic aperture radar imaging. Multidimensional Systems and Signal Processing, 27(2):411, April 2016. [Abstract] [bibtex-entry]


  3. Jan Torgrimsson, Patrik Dammert, Hans Hellsten, and Lars M. H. Ulander. Factorized Geometrical Autofocus for Synthetic Aperture Radar Processing. IEEE Trans. Geosci. Remote Sens., 52(10):6674-6687, October 2014. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Time-Domain Back-Projection, TDBP, Airborne SAR, CARABAS Autofocus, SAR Autofocus, Geometrical Autofocus, radar imaging, radar tracking, synthetic aperture radar, ultra wideband radar, FGA algorithm, coherent all radio band system II data set, constrained problem, factorized geometrical autofocus algorithm, fast factorized back-projection chain, gain 3 dB, intensity correlation, object function, peak-to-sidelobe ratio measurement, radar imaging, residual space variant range cell migration, ultrawideband synthetic aperture radar processing, Apertures, Electronics packaging, Geometry, Radar tracking, Synthetic aperture radar, Transforms, Autofocus, back-projection, phase gradient algorithm (PGA), synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  4. Francesco De Zan, A. Parizzi, Pau Prats-Iraola, and Paco López-Dekker. A SAR Interferometric Model for Soil Moisture. IEEE_J_GRS, 52(1):418-425, January 2014. Keyword(s): dielectric properties, hydrological techniques, radar interferometry, remote sensing by radar, soil, synthetic aperture radar, Born approximation, L-band airborne SAR data, SAR interferometric model, coherence magnitudes, complex interferometric coherences, dielectric properties, geometrical properties, interferogram triplets, phase consistency, plane waves, quantitatively synthetic aperture radar interferometric observables, scattering models, soil moisture, tomography, vertical complex wavenumbers, Coherence, L-band, Moisture, Soil moisture, Synthetic aperture radar, Coherence, soil moisture, synthetic aperture radar (SAR) interferometry. [Abstract] [bibtex-entry]


  5. E Bleszynski, M Bleszynski, and T Jaroszewicz. Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures. Inverse Problems, 29(5):054004, April 2013. Keyword(s): SAR Processing, Autofocus, Airborne SAR, Gotcha SAR Data. [Abstract] [bibtex-entry]


  6. Yake Li, Chang Liu, Yanfei Wang, and Qi Wang. A Robust Motion Error Estimation Method Based on Raw Data. IEEE Trans. Geosci. Remote Sens., 50(7):2780-2790, 2012. Keyword(s): SAR Processing, Autofocus, SAR Autofocus, MoComp, Motion Compensation, curve fitting, geophysical image processing, least squares approximations, motion compensation, radar imaging, remote sensing by radar, synthetic aperture radar, RCMC, aircraft reference track deviations, curve fitting, double phase gradient estimation, filtering method, high order motion errors, high precision navigation system, high resolution airborne SAR systems, high resolution imagery, image processing, image quality, large swath mode, light aircraft SAR platform, motion compensation, motion error estimation method, range cell migration correction, range dependent phase errors, range resolution improvement, raw data, synthetic aperture radar, weighted total least square method, Aircraft, Azimuth, Electronics packaging, Error analysis, Estimation, Robustness, Trajectory, Autofocus, motion error estimation, phase gradient filtering, synthetic aperture radar (SAR), weighted total least square (WTLS) method. [Abstract] [bibtex-entry]


  7. Karlus A. Câmara de Macedo, Rolf Scheiber, and Alberto Moreira. An Autofocus Approach for Residual Motion Errors With Application to Airborne Repeat-Pass SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 46(10):3151-3162, October 2008. Keyword(s): SAR Processing, Autofocus, Residual Motion Errors, WPCA, Weighted PCA, Weighted Phase Curvature Autofocus, Phase Curvature Autofocus, PCA, Phase Gradient Autofocus, PGA, Repeat-Pass Interferometry, Interferometry, InSAR, D-InSAR, Differential SAR Interferometry, E-SAR, airborne SAR, Baseline Calibration, Tomography, SAR Tomography, deformation, geophysical techniques, synthetic aperture radar, topography (Earth)E-SAR system, German Aerospace Center, airborne repeat-pass SAR Interferometry, autofocus algorithm, autofocus techniques, high-precision navigation system, image processing, interferometric-phase accuracy, phase curvature autofocus, residual motion errors, synthetic-aperture-radar, terrain deformations measurement, weighted least squares phase estimation. [Abstract] [bibtex-entry]


  8. J. Li, Z. Bi, and Z.-S. Liu. Autofocus and feature extraction in curvilinear SAR via a relaxation-based algorithm. Radar, Sonar and Navigation, IEE Proceedings -, 146(4):201-207, 1999. Keyword(s): SAR Processing, Non-Linear Flight Path, SAR Tomography, Curvilinear SAR, error analysis, feature extraction, focusing, radar imaging, synthetic aperture radar, 3D target features, AUTORELAX, CLSAR, SAR imaging, aperture errors compensation, curvilinear SAR, curvilinear synthetic aperture radar, data model, estimation accuracy, experimental results, feature extraction, relaxation-based algorithm, relaxation-based autofocus algorithm, simulation results, target parameters. [Abstract] [bibtex-entry]


  9. T. M. Calloway and G. W. Donohoe. Subaperture autofocus for synthetic aperture radar. IEEE Transactions on Aerospace and Electronic Systems, 30(2):617-621, 1994. Keyword(s): SAR Processing, Autofocus. [Abstract] [bibtex-entry]


  10. Jorgen Dall. A Fast Autofocus Algorithm for Synthetic Aperture Radar Processing. IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP, 3:5-8, September 1992. Keyword(s): SAR Processing, Doppler Rate Estimation, Autofocus, Airborne SAR. [Abstract] [bibtex-entry]


Conference articles

  1. Jan Torgrimsson, Patrik Dammert, Hans Hellsten, and Lars M. H. Ulander. Autofocus and analysis of geometrical errors within the framework of fast factorized back-projection. In Proc. SPIE, volume 9093, pages 909303-909303-16, 2014. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Time-Domain Back-Projection, TDBP, Autofocus, SAR Autofocus, Geometrical Autofocus, Airborne SAR, CARABAS, factorized geometrical autofocus algorithm, fast factorized back-projection chain, gain 3 dB, intensity correlation, object function, peak-to-sidelobe ratio measurement, radar imaging, residual space variant range cell migration, ultrawideband synthetic aperture radar processing, Apertures, Electronics packaging, Geometry, Radar tracking, Synthetic aperture radar, Transforms, Autofocus, back-projection, phase gradient algorithm, PGA, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  2. Jan Torgrimsson, Patrik Dammert, Hans Hellsten, and Lars M. H. Ulander. Autofocus and analysis of geometrical errors within the framework of fast factorized back-projection. In Edmund Zelnio and Frederick D. Garber, editors, Algorithms for Synthetic Aperture Radar Imagery XXI, volume 9093, pages 10 - 25, 2014. International Society for Optics and Photonics, SPIE. Keyword(s): SAR Processing, Synthetic Aperture Radar, Time-Domain Back-Projection, TDBP, Back-Projection, Autofocus, UWB, VHF, Fast Factorized Back-Projection, FFBP. [Abstract] [bibtex-entry]


  3. T. Marston. A correlation-based autofocus algorithm for coherent circular synthetic aperture sonar. In Proc. EUSAR 2012; 9th European Conf. Synthetic Aperture Radar, pages 66-69, April 2012. Keyword(s): Apertures, Correlation, Fourier transforms, Manganese, Navigation, Synthetic aperture sonar. [bibtex-entry]


  4. A. Wyholt and Lars M. H. Ulander. Evaluating VHF-band SAR autofocus algorithms using a forest backscatter model. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 4, pages 9-12, July 2009. Keyword(s): SAR Processing, Autofocus, Time-Domain Back-Projection, TDBP, FFBP, SAR subimages, VHF-band SAR autofocus algorithms, fast factorized back-projection algorithm, forest backscatter model, forest clutter model, matching error, residual displacement errors, subimage matching, backscatter, focusing, geophysical image processing, image matching, remote sensing by radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  5. Armin W. Doerry. Autofocus correction of SAR images exhibiting excessive residual migration. In Robert N. Trebits and James L. Kurtz, editors, Proceedings of SPIE Vol. 5788, Radar Sensor Technology IX, volume 5788, pages 34-45, 2005. SPIE. Keyword(s): SAR Processing, Autofocus, Phase Gradient Autofocus. [Abstract] [bibtex-entry]


  6. J. Kolman. PACE: an autofocus algorithm for SAR. In Proc. IEEE Int. Radar Conference, pages 310-314, May 2005. Keyword(s): SAR Processing, Autofocus, Phase Adjustment by Contrast Enhancement, PACE, Azimuth, Focusing, Error correction, Synthetic aperture radar, Phase measurement, Pixel, Flexible printed circuits, Hardware, History, Error analysis. [bibtex-entry]


  7. V. C. Koo, T. S. Lim, and H. T. Chuah. A Comparison of Autofocus Algorithms for SAR Imagery. In Progress In Electromagnetics Research Symposium, volume 1, Hangzhou, China, pages 16-9, 2005. Keyword(s): SAR Processing, Autofocus, Motion Compensation, MoComp, Residual Motion Errors, Comparion of Algorithms, Comparison of Autofocus Algorithms, Airborne SAR, Phase Gradient Autofocus, PGA, Eigenvector Method, Maximum Likelihood Estimation. [Abstract] [bibtex-entry]


  8. Tuo Fu, Meiguo Gao, and Yuan He. An improved scatter selection method for phase gradient autofocus algorithm in SAR/ISAR autofocus. In Neural Networks and Signal Processing, 2003. Proceedings of the 2003 International Conference on, volume 2, pages 1054-1057, December 2003. Keyword(s): SAR Processing, Autofocus, Phase Gradient Autofocus. [bibtex-entry]


  9. T.J. Sutton, H.D. Griffiths, A.P. Hetet, Y. Perrot, and S.A. Chapman. Experimental validation of autofocus algorithms for high-resolution imaging of the seabed using synthetic aperture sonar. In Radar, Sonar and Navigation, IEE Proceedings -, volume 150, pages 78-83, April 2003. [bibtex-entry]


  10. Richard Abrahamsson, Jian Li, Petre Stoica, and Gunnar Thordarson. Sensitivity of two autofocus algorithms to spatially variant phase errors. In E. G. Zelnio, editor, Proceedings of SPIE Vol. 5788, volume 4382 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, pages 29-40, August 2001. Keyword(s): SAR Processing, Phase Gradient Autofocus, PGA, AUTOCLEAN, CLEAN, Polar Format Algorithm, Autofocus, Residual Motion Errors, Motion Errors, Motion Compensation, MoComp, Motion Through Resolution Cells, Spatially Variant Phase Errors, Airborne SAR. [Abstract] [bibtex-entry]


  11. M. Preiss, D. Gray, and N.J.S. Stacy. The effect of polar format resampling on uncompensated motion phase errors and the phase gradient autofocus algorithm. In Geoscience and Remote Sensing Symposium, 2001. IGARSS '01. IEEE 2001 International, volume 3, pages 1442-1444, July 2001. Keyword(s): SAR Processing, Autofocus, Phase Gradient Autofocus. [bibtex-entry]


  12. D.G. Thompson, J.S. Bates, and D.V. Arnold. Extending the phase gradient autofocus algorithm for low-altitude stripmap mode SAR. In The Record of the 1999 IEEE Radar Conference, pages 36-40, April 1999. Keyword(s): SAR Processing, Autofocus, Phase Gradient Autofocus, Strip-map, Range-Dependent. [bibtex-entry]


  13. D.G. Thompson, J.S. Bates, D.V. Arnold, and David G. Long. Extending the phase gradient autofocus algorithm for low-altitude stripmap mode SAR. In IEEE International Geoscience and Remote Sensing Symposium, IGARSS '99, volume 1, pages 564-566, July 1999. Keyword(s): SAR Processing, Autofocus, Phase Gradient Autofocus, Strip-map, Range-dependent. [bibtex-entry]


  14. Terry M. Calloway, Charles V. Jakowatz, Paul A. Thompson, and Paul H. Eichel. Comparison of synthetic-aperture radar autofocus techniques: phase gradient versus subaperture. In Franklin T. Luk, editor, , volume 1566, pages 353-364, 1991. SPIE. Keyword(s): SAR Processing, Autofocus, Comparison of Algorithms, Comparison of Autofocus Algorithms, Phase Gradient Algorithm, PGA, Subaperture-based Autofocus, subaperture correlation, look-misregistration autofocus, Map Drift. [bibtex-entry]


  15. Jorgen Dall. A new frequency domain autofocus algorithm for SAR. In IGARSS '91, Geoscience and Remote Sensing Symposium, volume 2, pages 1069 - 1072, 1991. Keyword(s): SAR Processing, Autofocus, SAC, Shift and Correlate Algorithm, Doppler Rate Estimation, Autofocus, Map Drift, Airborne SAR. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:39:15 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html