BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'ScanSAR'

Books and proceedings

  1. Ian G. Cumming and Frank H. Wong. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Artech House Inc., Boston, London, 2005. Keyword(s): SAR Processing, Range-Doppler Algorithm, Chirp Scaling Algorithm, Extended Chirp Scaling Algorithm, Range Migration Algorithm, omega-k, Wavenumber Domain Algorithm, SPECAN Algorithm, Comparison of Algorithms, Demodulation, Quadrature Demodulation, Hilbert Transform, Doppler Centroid Estimation, Doppler Ambiguity Resolver, DAR, Doppler Rate Estimation, Azimuth FM Rate, Autofocus Techniques, ScanSAR, Range Compression, Pulse Compression, Pulse Compression of Linear FM Signals, Linear FM Signals, Stolt Mapping, Quality Assessment, Quality Measures, Quality Metrics, PSLR, ISLR, Spaceborne SAR. [Abstract] [bibtex-entry]


Thesis

  1. Josef Mittermayer. Hochauflösende Verarbeitung von Radardaten mit synthetischer Apertur. PhD thesis, Universität-Gesamthochschule Siegen, 2000. Keyword(s): SAR Processing, Frequency Scaling Algorithm, Comparison of Algorithms, Range-Doppler Algorithm, Wavenumber Domain Algorithm, omega-k, Range Migration Algorithm, Polar Format Algorithm, SPECAN, Convolution Back-projection, Spotlight SAR, Stripmap SAR, ScanSAR, ESAR, Airborne SAR, Spaceborne SAR. [Abstract] [bibtex-entry]


Articles in journal or book chapters

  1. Giorgio Gomba, Fernando Rodriguez Gonzalez, and Francesco De Zan. Ionospheric Phase Screen Compensation for the Sentinel-1 TOPS and ALOS-2 ScanSAR Modes. IEEE_J_GRS, 55(1):223-235, January 2017. Keyword(s): SAR Processing, split-spectrum, split-spectrum interferometry, split-band, split-band interferometry, ionospheric disturbances, total electron content (atmosphere), 2015 Nepal earthquake, 2016 Taiwan earthquake, ALOS-2 ScanSAR modes, ALOS-2 interferograms, C-band interferograms, Sentinel-1 TOPS, dispersive ionospheric component, interferometric measurements, ionospheric phase screen compensation, local global positioning system measurements, split-spectrum method, synthetic aperture radar acquisitions, total electron content maps, Azimuth, Correlation, Electrostatic discharges, Ionosphere, Satellites, Synthetic aperture radar, Timing, InSAR, SAR ionospheric effects, ionosphere estimation, split-spectrum. [Abstract] [bibtex-entry]


  2. P. Prats-Iraola, M. Rodriguez-Cassola, F. De Zan, R. Scheiber, P. L�pez-Dekker, I. Barat, and D. Geudtner. Role of the Orbital Tube in Interferometric Spaceborne SAR Missions. IEEE Geoscience and Remote Sensing Letters, 12(7):1486-1490, July 2015. Keyword(s): decorrelation, Earth orbit, radar interferometry, spaceborne radar, synthetic aperture radar, interferometric spaceborne SAR mission, Earth observation satellite synthetic aperture radar mission, Earthfixed orbital tube, ground-track coverage repeatability, repeat-pass interferometric compatibility, azimuth spectral decorrelation, azimuth coregistration accuracy, ScanSAR, TOPS, terrain observation by progressive scan, Sentinel-1 mission, Orbits, Electron tubes, Azimuth, Doppler effect, Satellites, Synthetic aperture radar, Remote sensing, Coregistration, interferometric SAR (InSAR), orbital tube, ScanSAR, spectral decorrelation, synthetic aperture radar (SAR), Terrain Observation by Progressive Scans (TOPS), Coregistration, interferometric SAR (InSAR), orbital tube, ScanSAR, spectral decorrelation, synthetic aperture radar (SAR), Terrain Observation by Progressive Scans (TOPS). [Abstract] [bibtex-entry]


  3. Wei Xu, Pingping Huang, Yunkai Deng, Jiantao Sun, and Xiuqin Shang. An Efficient Approach With Scaling Factors for TOPS-Mode SAR Data Focusing. IEEE Geosci. Remote Sens. Lett., 8(5):929-933, Sept 2011. Keyword(s): SAR Processing, TOPS, Terrain Observation by Progressive Scans, geophysical techniques, synthetic aperture radar, Doppler spectrum, ScanSAR, TOPS-mode SAR data focusing, TOPS-mode synthetic aperture radar data, Terrain Observation by Progressive Scans mode, azimuth baseband scaling operation, azimuth scaling factors, extended chirp scaling processing procedure, full-aperture imaging approach, limited azimuth-data extension, residual TOPS raw-data focusing, sliding spotlight SAR data focusing, spaceborne imaging mode, two-step focusing technique, wide-swath coverage, Azimuth, Bandwidth, Doppler effect, Focusing, Image resolution, Remote sensing, Aliasing, Terrain Observation by Progressive Scans (TOPS), deramp, extended chirp scaling, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  4. Nicolas Gebert, Gerhard Krieger, and Alberto Moreira. Multichannel Azimuth Processing in ScanSAR and TOPS Mode Operation. IEEE Trans. Geosci. Remote Sens., 48(7):2994-3008, July 2010. Keyword(s): SAR Processing, TOPS, Terrain Observation by Progressive Scans, geophysical signal processing, geophysical techniques, synthetic aperture radar, SAR missions, SAR signal processing, TOPS mode operation, Terrain Observation by Progressive Scans system, azimuth antenna length, conventional synthetic aperture radar, digital beamforming algorithms, digital signal processing network, geometric resolution, high-resolution wide-swath SAR imaging, multichannel ScanSAR systems, multichannel azimuth processing, multichannel burst-mode operation, multichannel stripmap mode, multiple azimuth channels, multiple receive channels, staircase multichannel processing, stripmap operation, ultrawide-swath imaging, ultrawide-swath synthetic aperture radar imaging, High-resolution ultrawide-swath synthetic aperture radar (SAR) imaging, ScanSAR, TOPS, multichannel azimuth processing, multichannel burst-mode operation. [Abstract] [bibtex-entry]


  5. Adriano Meta, Joseph Mittermayer, Pau Prats, Rolf Scheiber, and Ulrich Steinbrecher. TOPS Imaging With TerraSAR-X: Mode Design and Performance Analysis. IEEE Trans. Geosci. Remote Sens., 48(2):759-769, February 2010. Keyword(s): SAR Processing, TOPS, geophysical techniques, radar antennas, radar imaging, radar interferometry, synthetic aperture radar, DTAR deterioration, ScanSAR modes, TOPS imaging, TSX, TerraSAR-X, Terrain Observation by Progressive Scan, antenna steering, burst acquisition, complete azimuth antenna pattern, imaging mode design, interferometry, performance analysis, squinted angles, wide-swath TOPS, ScanSAR, synthetic aperture radar (SAR), terrain observation by progressive scan (TOPS), wide-swath SAR. [bibtex-entry]


  6. J. Mittermayer, Marwan Younis, R. Metzig, S. Wollstadt, J. Marquez Martinez, and Adriano Meta. TerraSAR-X System Performance Characterization and Verification. IEEE Transactions on Geoscience and Remote Sensing, 48(2):660-676, February 2010. Keyword(s): calibration, geophysical techniques, optimisation, remote sensing by radar, spaceborne radar, synthetic aperture radar, ScanSAR, Spotlight, TerraSAR-X system, acquisition geometry, ambiguities, block adaptive quantization setting, commissioning phase, elevation beam definition, impulse-response function, noise, optimization, performance characterization, radiometric resolution, range timing, receiving gain, synthetic aperture radar, systems verification, Commissioning phase, SAR system performance, TerraSAR-X (TS-X), synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  7. Pau Prats, Rolf Scheiber, Josef Mittermayer, Adriano Meta, and Alberto Moreira. Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling. IEEE Trans. Geosci. Remote Sens., 48(2):770-780, February 2010. Keyword(s): data acquisition, geophysical image processing, radar imaging, synthetic aperture radar, Doppler centroid, SAR processing, ScanSAR mode, TOPS SAR Data, TerraSAR-X, azimuth processing, baseband azimuth scaling, data focusing, phase preserving processor, sliding spotlight, synthetic aperture radar, terrain observation, Azimuth scaling, SAR processing, ScanSAR, Terrain Observation by Progressive Scans (TOPS), spotlight, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  8. Ian G. Cumming and S. Li. Adding Sensitivity to the MLBF Doppler Centroid Estimator. IEEE Transactions on Geoscience and Remote Sensing, 45(2):279-292, Feb. 2007. Keyword(s): SAR Processing, Multilook Beat Frequency, MLPF, Doppler Centroid Estimation, Doppler Ambiguity Resolver, DAR, Doppler radar, fast Fourier transforms, frequency estimation, radar signal processing, remote sensing by radar, sensitivity, synthetic aperture radarDoppler ambiguity, Doppler centroid estimator, FFT, Fourier transform, MLBF algorithm, RADARSAT-1, ScanSAR, cross beating, estimation sensitivity, multilook beat frequency algorithm, range migration, target trajectory. [Abstract] [bibtex-entry]


  9. Francesco De Zan and Andrea Monti Guarnieri. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens., 44(9):2352-2360, Sept 2006. Keyword(s): array signal processing, remote sensing by radar, synthetic aperture radar, terrain mapping, SPOT, TOPSAR, azimuth-varying ambiguities, focusing technique, radar beam, scalloping ambiguities, scanning synthetic aperture radar, terrain observation with progressive scan, Azimuth, Focusing, Frequency, Geometry, Interferometry, Low earth orbit satellites, Polarization, Radar antennas, Radar signal processing, Spaceborne radar, Array signal processing, interferometry, scanning antennas, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  10. Martin Stangl, Rolf Werninghaus, B. Schweizer, C. Fischer, Michael Brandfass, Josef Mittermayer, and Helko Breit. TerraSAR-X Technologies and First Results. Radar, Sonar & Navigation, 153(2):86 - 95, April 2006. Keyword(s): SAR Processing, TerraSAR-X, Spaceborne SAR, X-Band, Instrument Description, Imaging Modes, Stripmap, ScanSAR, Spotlight SAR, TerraSAR-X multimode SAR processor, TMSP, Chirp Scaling Algorithm, CSA, SPECAN Algorithm, SPECAN. [Abstract] [bibtex-entry]


  11. Ciro Cafforio, Pietro Guccione, and Andrea Monti-Guarnieri. Doppler Centroid Estimation for ScanSAR Data. IEEE Transactions on Geoscience and Remote Sensing, 42(1):14-23, January 2004. Keyword(s): SAR Processing, Doppler Centroid, Doppler Centroid Estimation, Doppler Ambiguity Resolver, DAR, Clutterlock, Satellite SAR, RADARSAT 1, ENVISAT, ScanSAR. [Abstract] [bibtex-entry]


  12. Jürgen Holzner and Richard Bamler. Burst-Mode and ScanSAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 40(9):1917-1934, September 2002. Keyword(s): SAR Processing, Burst-mode, ScanSAR, Interferometry, pack-and-go algorithm, ENVISAT, RADARSAT, SRTM. [Abstract] [bibtex-entry]


  13. Andrea Monti-Guarnieri and Pietro Guccione. Optimal Focusing for Low Resolution ScanSAR. IEEE Transactions on Geoscience and Remote Sensing, 39(3):479-491, March 2001. Keyword(s): SAR Processing, ScanSAR, Focusing. [Abstract] [bibtex-entry]


  14. Marina Dragosevic and Burkhard Plache. Doppler Tracker for a Spaceborne ScanSAR System. IEEE Transactions on Aerospace and Electronic Systems, 36(3):907-924, 2000. Keyword(s): SAR Processing, Doppler Centroid, Doppler Centroid Estimation, Clutterlock, Doppler Tracker, Attitude Angles, Doppler Ambiguity Resolver, DAR, Satellite SAR. [Abstract] [bibtex-entry]


  15. Rolf Scheiber and Alberto Moreira. Coregistration of interferometric SAR images using spectral diversity. IEEE Transactions on Geoscience and Remote Sensing, 38(5):2179-2191, September 2000. Keyword(s): SAR Processing, Spectral Diversity, Coregistration, Image Coregistration, InSAR, SAR Interferometry, Airborne SAR, Spaceborne SAR, geophysical signal processing, geophysical techniques, image registration, radar imaging, remote sensing by radar, synthetic aperture radar, terrain mappingInSAR, complex SAR signal, geophysical measurement technique, image registration, land surface, radar imaging, radar remote sensing, relative misregistration, synthetic aperture radar, terrain mapping. [Abstract] [bibtex-entry]


  16. R. Lanari, S. Hensley, and P.A. Rosen. Chirp z-transform based SPECAN approach for phase-preserving ScanSAR image generation. Radar, Sonar and Navigation, IEE Proceedings -, 145(5):254-261, October 1998. Keyword(s): SAR Processing, Modified SPECAN, SPECAN, Spectral Analysis, Z transforms, airborne radar, image resolution, radar imaging, radar resolution, InSAR, SAR Interferometry, radiowave interferometry, spaceborne radar, synthetic aperture radar, time-domain analysis, transient response, ScanSAR, airborne platform, algorithm, azimuth focusing, chirp z-transform, chirp-z, experiments, high resolution microwave images, image impulse response, interferometric ScanSAR systems, modified SPECAN algorithm, phase analysis, phase-preserving ScanSAR image generation, real data, scan mode synthetic aperture radar, simulated data, spaceborne platform, standard range-Doppler approach, time domain. [Abstract] [bibtex-entry]


  17. Michael Y. Jin. Optimal Range and Doppler Centroid Estimation for a ScanSAR System. IEEE Transactions on Geoscience and Remote Sensing, 34(2):479-488, March 1996. Keyword(s): SAR Processing, Doppler Centroid, Doppler Centroid Estimation, Clutterlock, ScanSAR, SIR-C, ERS. [Abstract] [bibtex-entry]


  18. Alberto Moreira, Josef Mittermayer, and Rolf Scheiber. Extended Chirp Scaling Algorithm for Air- and Spaceborne SAR Data Processing in Stripmap and ScanSAR Imaging Modes. IEEE Transactions on Geoscience and Remote Sensing, 34(5):1123-1136, September 1996. Keyword(s): SAR Processing, Chirp Scaling Algorithm, Extended Chirp Scaling Algorithm, Spaceborne SAR, Airborne SAR, ScanSAR, Automatic Azimuth Coregistration, Azimuth Scaling, Squinted SAR, Interferometry, Phase-Preserving Processing, Range Scaling Formulation, Stripmap SAR, Subaperture Processing, Terrain Mapping. [Abstract] [bibtex-entry]


  19. Frank Wong and Ian G. Cumming. A Combined SAR Doppler Centroid Estimation Scheme Based Upon Signal Phase. IEEE Transactions on Geoscience and Remote Sensing, 34(3):696-707, May 1996. Keyword(s): SAR Processing, Doppler Centroid, Doppler Centroid Estimation, Multilook Cross Correlation, MLCC, Multilook Beat Frequency, MLBF, Clutterlock, Doppler Ambiguity Resolver, DAR. [Abstract] [bibtex-entry]


Conference articles

  1. Marc Rodriguez-Cassola, Pau Prats-Iraola, Francesco De Zan, Rolf Scheiber, and Andreas Reigber. Doppler-related focusing aspects in the TOPS imaging mode. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 2043-2046, July 2013. Keyword(s): SAR Processing, TOPS, Terrain Observation by Progressive Scans, geophysical techniques, synthetic aperture radar, Doppler spectrum, ScanSAR, TOPS-mode SAR data focusing, TOPS-mode synthetic aperture radar data, Terrain Observation by Progressive Scans mode, azimuth baseband scaling operation, azimuth scaling factors, extended chirp scaling processing procedure, full-aperture imaging approach, limited azimuth-data extension, residual TOPS raw-data focusing, sliding spotlight SAR data focusing, spaceborne imaging mode, two-step focusing technique, wide-swath coverage, Azimuth, Bandwidth, Doppler effect, Focusing, Image resolution, Remote sensing, Aliasing, Terrain Observation by Progressive Scans (TOPS), deramp, extended chirp scaling, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  2. Charles L. Werner, Urs Wegmuller, Othmar Frey, and Maurizio Santoro. Interferometric processing of PALSAR Wide-Beam SCANSAR Data. In Proc. FRINGE 2011, ESA SP-697, Frascati, Italy, September 2011. Keyword(s): SAR Processing, Interferometry, InSAR, SAR Interferometry, PALSAR, ALOS PALSAR, ScanSAR, L-Band, Spaceborne SAR. [Abstract] [bibtex-entry]


  3. Andreas Wiesmann, Charles L. Werner, Tazio Strozzi, Christian Matzler, Thomas Nagler, Helmut Rott, Martin Schneebeli, and Urs Wegmuller. SnowScat, X- to Ku-Band Scatterometer Development. In Proc. ESA Living Planet Symposium, June 2010. Keyword(s): SnowScat, KuScat, backscatter, hydrological techniques, radiometry, remote sensing by radar, snow, spaceborne radar, C-band SAR satellite systems, ESA CoRe-H2O mission, Ku-band scatterometer, Swiss Alps, X-band scatterometer, backscatter information, backscattering signal, dry snow cover, dual frequency radar, frequency 18 GHz, frequency 9 GHz, mobile scatterometer, snow coverage, snow liquid water content, snow structure, spaceborne active microwave remote sensing, Backscatter, Frequency, Ground support, Radar measurements, Remote sensing, Satellites, Signal generators, Snow, Spaceborne radar, Water storage, Scatterometer, Snow, backscatter, snow grain. [Abstract] [bibtex-entry]


  4. A. Löw and W. Mauser. Generation of geometrically and radiometrically terrain corrected ScanSAR images. In IEEE International Geoscience and Remote Sensing Symposium, 2003. IGARSS '03, volume 6, pages 3995-3997, 2003. Keyword(s): SAR Processing, SAR Geocoding, Radiometric Calibration, Calibration, Radiometric Correction, backscatter, microwave imaging, radiometry, synthetic aperture radar, terrain mapping, topography (Earth), ENVISAT, ASAR, RADARSAT, biophysical parameters, geometrically terrain corrected ScanSAR images, ScanSAR, geophysical parameters, microwave imagery, quantitative image analysis, radiometrically terrain corrected ScanSAR images, surface topography, synthetic aperture imagery. [Abstract] [bibtex-entry]


  5. Ian G. Cumming, Frank Wong, and Bob Hawkins. RADARSAT-1 Doppler Centroid Estimation Using Phase-Based Estimators. In CEOS SAR Workshop 1999, 1999. Keyword(s): SAR Processing, Doppler Centroid, Doppler Centroid Estimation, Multilook Cross Correlation, MLCC, Multilook Beat Frequency, MLBF, Clutterlock, Doppler Ambiguity Resolver, DAR, Satellite SAR. [Abstract] [bibtex-entry]


  6. Marina Dragosevic. On Accuracy of Attitude Estimation and Doppler Tracking. In CEOS SAR Workshop 1999, 1999. Keyword(s): SAR Processing, Doppler Centroid, Doppler Centroid Estimation, Clutterlock, Doppler Tracker, Attitude Angles, Doppler Ambiguity Resolver, DAR, Satellite SAR. [Abstract] [bibtex-entry]


  7. Andrea Monti-Guarnieri, Fabio Rocca, Pietro Guccione, and Ciro Cafforio. Optimal Interferometric ScanSAR Focusing. In IGARSS '99, International Geoscience and Remote Sensing Symposium, volume 3, pages 1718-1720, 1999. Keyword(s): SAR Processing, Interferometry, ScanSAR, Focusing. [Abstract] [bibtex-entry]


  8. Riccardo Lanari, Scott Hensley, and Paul Rosen. Modified SPECAN algorithm for ScanSAR data processing. In IEEE International Geoscience and Remote Sensing Symposium, volume 2, pages 636-638, July 1998. Keyword(s): SAR Processing, Modified SPECAN, SPECAN, Spectral Analysis, geophysical signal processing, geophysical techniques, radar imaging, remote sensing by radar, spaceborne radar, synthetic aperture radarSAR, ScanSAR, ScanSAR image, chirp z-transform, chirp-z, geophysical measurement technique, land surface, modified SPECAN algorithm, phase-preserving algorithm, radar imaging, radar remote sensing, range-dependent correction factor, synthetic aperture radar, terrain mapping. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:41:04 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html