BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'Convolution'

Books and proceedings

  1. John C. Curlander and Robert N. McDonough. Synthetic Aperture Radar - Systems and Signal Processing. John Wiley & Sons, New York, 1991. Keyword(s): SAR Processing, Radar Equation, Matched Filter, Pulse Compression, Range Compression Processing, Azimuth Processing, range-Doppler, Clutterlock, Doppler Centroid Estimation, Doppler Centroid, Autofocus, Doppler Ambiguity Resolver, DAR, Doppler Rate Estimation, Azimuth FM Rate, Autofocus Techniques, Radiometric Calibration, Geometric Calibration, Rectangular Algorithm, Deramp Compression, Step Transform Processing, Polar Processing, Fourier Transform, Convolution, Interpolation, Satellite Orbits. [Abstract] [Comments] [bibtex-entry]


Thesis

  1. Josef Mittermayer. Hochauflösende Verarbeitung von Radardaten mit synthetischer Apertur. PhD thesis, Universität-Gesamthochschule Siegen, 2000. Keyword(s): SAR Processing, Frequency Scaling Algorithm, Comparison of Algorithms, Range-Doppler Algorithm, Wavenumber Domain Algorithm, omega-k, Range Migration Algorithm, Polar Format Algorithm, SPECAN, Convolution Back-projection, Spotlight SAR, Stripmap SAR, ScanSAR, ESAR, Airborne SAR, Spaceborne SAR. [Abstract] [bibtex-entry]


  2. Jerald L. Bauck. Tomographic Processing of Synthetic Aperture Radar Signals for Enhanced Resolution. PhD thesis, 1989. Keyword(s): SAR Processing, Bistatic SAR, Back-Projection, bistatic synthetic aperture radar, Azimuth Focusing, convolution back-projection, elliptical-arc projections, final reconstructed image, ground patch, image resource, pixel, weighting, radar cross-sections, radar theory, Spotlight mode, Airborne SAR, Tomographic Processing, Tomography, Wavefront Curvature. [Abstract] [bibtex-entry]


Articles in journal or book chapters

  1. F. Sica, G. Gobbi, Paola Rizzoli, and Lorrenzo Bruzzone. arphi-Net: Deep Residual Learning for InSAR Parameters Estimation. IEEE Transactions on Geoscience and Remote Sensing, pp 1-25, 2020. Keyword(s): Estimation, Synthetic aperture radar, Coherence, Noise reduction, Convolution, Measurement, Wavelet transforms, Coherence, convolutional neural network (CNN), deep learning (DL), denoising, interferometric phase, residual learning, synthetic aperture radar (SAR) interferometry.. [Abstract] [bibtex-entry]


  2. K. Landmark, A. H. Schistad Solberg, F. Albregtsen, A. Austeng, and Roy E. Hansen. A Radon-Transform-Based Image Noise Filter With Applications to Multibeam Bathymetry. IEEE Transactions on Geoscience and Remote Sensing, 53(11):6252-6273, November 2015. Keyword(s): Synthetic Aperture Sonar, SAS, Radon transforms, bathymetry, geophysical image processing, image denoising, image restoration, radar imaging, remote sensing by radar, synthetic aperture radar, Chebyshev approximation, Laplacian point spread function, denoised image, fast discrete Radon transform, geomorphological type statistical classification, image transform, invariant terrain features, invertible edge detection operator, linear-image-transform-based algorithm, motion-induced errors, motion-induced noise, multibeam bathymetry, original image, processed test images, radon-transform-based image noise filter, remote sensing data, second noise signature, standard low-pass filters, synthetic aperture radar images, track line artifacts, Approximation algorithms, Image edge detection, Noise, Noise reduction, Presses, Radio frequency, Transforms, Discrete transforms, image denoising, image restoration, iterative methods, remote sensing, sonar, terrain mapping. [Abstract] [bibtex-entry]


  3. J. N. Ash. An Autofocus Method for Backprojection Imagery in Synthetic Aperture Radar. IEEE Geoscience and Remote Sensing Letters, 9(1):104-108, January 2012. Keyword(s): SAR Processing, Autofocus, autoregressive processes, convolution, digital elevation models, geophysical image processing, geophysical techniques, radar imaging, synthetic aperture radar, convolution backprojection, autofocus method, backprojection imagery, autofocus routine, spotlight-mode synthetic aperture radar data, image sharpness, imaging geometry, wide-angle aperture, digital elevation map, image-quality-based autofocus approach, natural geometric interpretation, optimal single-pulse phase correction, quartic polynomial, sequential imaging application, autoregressive backprojection, Synthetic aperture radar, Imaging, Apertures, Measurement, Optimization, History, Azimuth, Autofocus, autoregressive backprojection (ARBP), convolution BP (CBP) imaging, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  4. S. Ozsoy and A.A. Ergin. Pencil Back-Projection Method for SAR Imaging. IEEE Transactions on Image Processing, 18(3):573-581, March 2009. Keyword(s): SAR Processing, SAR Tomography, Tomography, SAR imaging, forward-backward total least squares bandpass matrix pencil method, pencil back-projection method, projected target reflectivity density function, synthetic aperture radar, tomographic image reconstruction, image reconstruction, least squares approximations, matrix algebra, radar imaging, synthetic aperture radar, Algorithms, Image Enhancement, Image Interpretation, Computer-Assisted, Imaging, Three-Dimensional, Radar, Reproducibility of Results, Sensitivity and Specificity, Tomography;. [Abstract] [bibtex-entry]


  5. Lei Zhang, Cheng-Wei Qiu, Mengdao Xing, and Zheng Bao. Azimuth preprocessing for monostatic and bistatic spotlight synthetic aperture radar maging based on spectral analysis convolution. Journal of Applied Remote Sensing, 3(1):1-20, January 2009. Keyword(s): SAR Processing, Bistatic SAR, SPECAN, Azimuth Focusing, Spotlight SAR, Spotlight-mode data. [Abstract] [bibtex-entry]


  6. R. Lanari, S. Zoffoli, E. Sansosti, G. Fornaro, and F. Serafino. New approach for hybrid strip-map/spotlight SAR data focusing. IEE Proceedings - Radar, Sonar and Navigation, 148(6):363 -372, December 2001. Keyword(s): SAR data processing, azimuth convolution, azimuth data filtering, azimuth resolution, chirp signal, focused SAR images, generalised processing code, hybrid acquisition mode, hybrid strip-map/spotlight SAR, microwave image generation, spacebome systems, spotlight SAR data processing, strip-map processing, two-step focusing technique, convolution, filtering theory, image resolution, radar imaging, radar resolution, spaceborne radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  7. Josef Mittermayer, Alberto Moreira, and Otmar Loffeld. Spotlight SAR data processing using the frequency scaling algorithm. IEEE Trans. Geosci. Remote Sens., 37(5):2198-2214, September 1999. Keyword(s): SAR Processing, Spotlight SAR, dechirp, dechirp-on-receive, Doppler radar, geophysical signal processing, radar imaging, remote sensing by radar, spectral analysis, synthetic aperture radarazimuth processing, azimuth scaling, chirp convolution, frequency scaling algorithm, Chirp Scaling Algorithm, nonchirped SAR signals, nonchirped raw data, range Doppler domain, range cell migration correction, residual video phase, RVP, spectral analysis approach, spotlight SAR data processing, stripmap raw data, subaperture approach. [Abstract] [bibtex-entry]


  8. Hyeokho Choi and David C. Munson, Jr.. Direct-Fourier Reconstruction in Tomography and Synthetic Aperture Radar. International Journal of Imaging Systems and Technology, 9(1):1-13, 1998. Keyword(s): SAR Processing, Tomography, Computed Tomography, CT, Convolution Back-Projection, CBP, Direct-Fourier Image Reconstruction, DF, Interpolator, Fourier-Domain Interpolator. [Abstract] [bibtex-entry]


  9. Mita D. Desai and W. Kenneth Jenkins. Convolution Backprojection Image Reconstruction for Spotlight Mode Synthetic Aperture Radar. IEEE Transactions on Image Processing, 1(4):505 - 517, October 1992. Keyword(s): SAR Processing, Spotlight SAR, Back-Projection, Convolution Back-Projection. [Abstract] [bibtex-entry]


  10. J. L. Bauck and W. K. Jenkins. Convolution-Backprojection Image Reconstruction For Bistatic Synthetic Aperture Radar With Correction For Wavefront Curvature And Propagation Attenuation. Proc.SPIE, 1101:1-8, 1989. Keyword(s): SAR Processing, Bistatic SAR, Back-Projection, bistatic synthetic aperture radar, Azimuth Focusing, convolution back-projection, elliptical-arc projections, final reconstructed image, ground patch, image resource, pixel, weighting, radar cross-sections, radar theory, Spotlight mode, Airborne SAR, Tomographic Processing, Tomography, Wavefront Curvature. [Abstract] [bibtex-entry]


  11. Donald Fraser. Interpolation by the FFT Revisited - an Experimental Investigation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(5):665-675, May 1989. Keyword(s): Interpolation, Interpolation by FFT, Fast Fourier Transforms, FFT, Nyquist limit, RMS error, Sampling Rate Conversion, Upsampling, Sinusoidal Test Signal. [Abstract] [bibtex-entry]


  12. David C. Munson, Jr., James Dennis O'Brien, and W. Kenneth Jenkins. A tomographic formulation of spotslight-mode synthetic aperture radar. Proceedings of the IEEE, 71(8):917-925, August 1983. Keyword(s): SAR Processing, Polar Format Algorithm, Convolution Back-Projection, Spotlight SAR, Spotlight mode, Tomographic formulation. [Abstract] [bibtex-entry]


  13. Robert G. Keys. Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(6):1153-1160, December 1981. Keyword(s): Interpolation, Boundary conditions, Convolution, Digital images, Image converters, Image processing, Image sampling, Interpolation, Kernel, Sampling methods, Signal processing algorithms. [Abstract] [bibtex-entry]


Conference articles

  1. Marcelo Albuquerque, Pau Prats, and Rolf Scheiber. Applications of Time-Domain Back-Projection SAR Processing in the Airborne Case. In European Conference on Synthetic Aperture Radar (EUSAR), pages 4, June 2008. VDE Verlag GmbH. Keyword(s): SAR Processsing, Time-Domain Back-Projection, TDBP, Back-Projection, Synthetic Aperture Radar (SAR), motion compensation, tomography, Airborne SAR, E-SAR, Topography-dependent motion compensation, Motion Compensation, MoComp, Interferometry, Non-Linear SAR, Non-Linear Flight Tracks. [Abstract] [bibtex-entry]


  2. Charles V. Jakowatz and Neall Doren. Comparison of polar formatting and back-projection algorithms for spotlight-mode SAR image formation. In Edmund G. Zelnio and Frederick D. Garber, editors, , volume 6237, pages 62370H, 2006. SPIE. Keyword(s): SAR Processing, Polar Format Algorithm, PFA, Convolution Backprojection Algorithm, CPB, Comparison of Algorithms, Spotlight SAR, Spotlight-mode data. [bibtex-entry]


  3. J.M. Munoz-Ferreras, J. Calvo-Gallego, F. Perez-Martinez, A. Blanco-del-Campo, A. Asensio-Lopez, and B.P. Dorta-Naranjo. Motion compensation for ISAR based on the shift-and-convolution algorithm. In IEEE Conference on Radar, pages 1-5, April 2006. Keyword(s): ISAR. [bibtex-entry]


  4. Ali F. Yegulalp. Fast Backprojection Algorithm for Synthetic Aperture Radar. In The Record of the 1999 IEEE Radar Conference, pages 60-65, 1999. Keyword(s): SAR Processing, Back-Projection, Convolution Back-Projection, FOPEN, Ultra-Wideband SAR, Image Formation, Focusing, Motion Compensation, Time-Domain Back-Projection, TDBP. [Abstract] [bibtex-entry]


  5. Jung Ah C. Lee, Orhan Arikan, and David C. Munson, Jr.. Formulation of a General Imaging Algorithm for High-Resolution Synthetic Aperture Radar. In ICASSP '96, International Conference on Acoustics, Speech, and Signal Processing, volume 4, pages 2092-2095, May 1996. Keyword(s): SAR Processing, Backprojection, Convolution Backprojection. [Abstract] [bibtex-entry]


  6. D.E. Wahl, C.V. Jakowatz, and P.A. Thompson. New approach to strip-map SAR autofocus. In Digital Signal Processing Workshop, 1994., 1994 Sixth IEEE, pages 53-56, October 1994. Keyword(s): SAR Processing, Autofocus, Phase Curvature Autofocus, Phase Gradient Autofocus. [Abstract] [bibtex-entry]


  7. J.L. Bauck and W. K. Jenkins. Convolution-backprojection image reconstruction for bistatic synthetic aperture radar. In Proc. IEEE Int. Symp. on Circuits and Systems, volume 3, pages 1512-1515, May 1989. Keyword(s): SAR Processing, Bistatic SAR, Back-Projection, bistatic synthetic aperture radar, Azimuth Focusing, convolution back-projection, elliptical-arc projections, final reconstructed image, ground patch, image resource, pixel, weighting, radar cross-sections, radar theory, Spotlight mode, Airborne SAR, Tomographic Processing, Tomography, Wavefront Curvature. [Abstract] [bibtex-entry]


  8. J. L. Bauck and W. K. Jenkins. Tomographic Processing of Spotlight-Mode Synthetic Aperture Radar Signals with Compensation for Wavefront Curvature. In ICASSP '88, International Conference on Acoustics, Speech, and Signal Processing, volume 2, pages 1192-1195, April 1988. Keyword(s): SAR Processing, Bistatic SAR, Back-Projection, bistatic synthetic aperture radar, Azimuth Focusing, convolution back-projection, elliptical-arc projections, final reconstructed image, ground patch, image resource, pixel, weighting, radar cross-sections, radar theory, Spotlight mode, Airborne SAR, Tomographic Processing, Tomography, Wavefront Curvature. [Abstract] [bibtex-entry]


  9. Ian G. Cumming and John R. Bennett. Digital processing of SEASAT SAR data. In Proc. Rec. IEEE Int. Conf. Acoust., Speech Signal, volume 4, Washington, DC, pages 710-718, April 1979. Keyword(s): SAR Processing, Seasat, Spaceborne SAR, Range Compression, Azimuth Compression, Azimuth Focusing. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Fri Feb 24 14:22:59 2023
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html