BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'image formation'

Books and proceedings

  1. Annelie Wyholt. SAR Image Focus Errors due to Incorrect Geometrical Positioning in Fast Factorized Back-Projection. Licentiatavhandling, Chalmers University of Technology, 2008. Keyword(s): SAR Processing, Autofocus, Time-Domain Back-Projection, TDBP, FFBP, SAR image processing, antenna path parameters, autofocus, fast factorized back-projection, radar imaging, synthetic aperture radar. [Abstract] [bibtex-entry]


  2. Walter G. Carrara, Ron S. Goodman, and Ronald M. Majewski. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. Artech House Inc., 1995. Keyword(s): SAR Processing, Spotlight SAR, Range Migration Algorithm, omega-k, Wavenumber Domain Algorithm, Chirp Scaling Algorithm, Polar Format Algorithm, Autofocus Techniques, Demodulation, Quadrature Demodulation, Hilbert Transform. [Abstract] [bibtex-entry]


Thesis

  1. Evan C. Zaugg. Generalized Image Formation for Pulsed and LFM-CW Synthetic Aperture Radar. PhD thesis, 2010. Keyword(s): SAR Processing, LFM-CW, LFM-CW SAR, FMCW, MoComp, motion compensation, CSA, ECS, Chirp Scaling, Extended Chirp Scaling, FSA, Frequency Scaling Algorithm, Range-Doppler Algorithm, synthetic aperture radar, Brigham Young University, muSAR system, LFM-CW signal model, SAR image quality, aircraft, atmospheric turbulence, high-resolution synthetic aperture radar systems, linear frequency-modulated continuous-wave signal, motion compensation, motion correction algorithms, unmanned aerial vehicle, Airborne SAR, geophysical techniques. [Abstract] [bibtex-entry]


Articles in journal or book chapters

  1. M. Schartel, R. Burr, W. Mayer, and C. Waldschmidt. Airborne Tripwire Detection Using a Synthetic Aperture Radar. IEEE Geoscience and Remote Sensing Letters, 17(2):262-266, February 2020. Keyword(s): SAR Processing, UAV, FMCW, Chirp, Synthetic aperture radar, Radar imaging, Wires, Antennas, Radar cross-sections, Antipersonnel (AP) mine, frequency-modulated continuous-wave (FMCW) radar, multicopter, synthetic aperture radar (SAR), tripwire, unmanned aerial system (UAS), Time-Domain Back-Projection, TDBP. [Abstract] [bibtex-entry]


  2. Yanghai Yu, Mauro Mariotti d'Alessandro, Stefano Tebaldini, and Mingsheng Liao. Signal Processing Options for High Resolution SAR Tomography of Natural Scenarios. Remote Sensing, 12(10), 2020. [Abstract] [bibtex-entry]


  3. D. Li, M. Rodriguez-Cassola, P. Prats-Iraola, M. Wu, and A. Moreira. Reverse Backprojection Algorithm for the Accurate Generation of SAR Raw Data of Natural Scenes. IEEE Geoscience and Remote Sensing Letters, 14(11):2072-2076, November 2017. Keyword(s): data acquisition, geophysical image processing, remote sensing by radar, synthetic aperture radar, tropospheric electromagnetic wave propagation, reverse backprojection algorithm, SAR raw data, natural scenes, SAR image formation sibling, multistatic SAR missions, synthetic aperture radar mission concepts, geosynchronous SAR missions, observation geometry, acquisition strategy, atmospheric propagation, Synthetic aperture radar, Low earth orbit satellites, Azimuth, Atmospheric modeling, Standards, Algorithm design and analysis, Data models, Azimuth variation, backprojection algorithm, geosynchronous (GEO) SAR, raw data simulation, synthetic aperture radar (SAR), terrain observation with progressive scan (TOPS), tropospheric propagation. [Abstract] [bibtex-entry]


  4. S. A. V. Synnes, A. J. Hunter, Roy E. Hansen, T. O. Saebo, H. J. Callow, R. van Vossen, and A. Austeng. Wideband Synthetic Aperture Sonar Backprojection With Maximization of Wave Number Domain Support. IEEE Journal of Oceanic Engineering, 42(4):880-891, October 2017. Keyword(s): Synthetic Aperture Sonar, SAS, image filtering, image resolution, optimisation, sensor arrays, sonar imaging, synthetic aperture sonar, time-domain analysis, BP, SAS arrays, SAS image formation algorithms, TDBP access data, WD filtering, aspect-dependent scattering, data degradation, frequency-dependent scattering, generic SAS design, sensor data quality, spatial domain quality metrics, time domain backprojection access data, wave number domain counterpart, wave number domain support maximization, wideband SAS systems, wideband synthetic aperture sonar backprojection, widebeam synthetic aperture sonar backprojection, Image resolution, Imaging, Performance evaluation, Scattering, Sonar applications, Synthetic aperture sonar, Wideband, Along-track ambiguity, backprojection (BP) algorithm, grating lobes, synthetic aperture sonar (SAS), wideband sonar. [Abstract] [bibtex-entry]


  5. Jamal Saeedi and Karim Faez. A back-projection autofocus algorithm based on flight trajectory optimization for synthetic aperture radar imaging. Multidimensional Systems and Signal Processing, 27(2):411, April 2016. [Abstract] [bibtex-entry]


  6. Xiaoshen Song and Weidong Yu. Processing video-SAR data with the fast backprojection method. IEEE Transactions on Aerospace and Electronic Systems, 52(6):2838-2848, December 2016. Keyword(s): SAR Processing, Back-Projection, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, radar imaging, synthetic aperture radar, FBP algorithm, GR, Gotcha data set, O(N2 log N) complexity reduction, ROI, X-band SAR measurement, fast backprojection method, general region, image sequence, land-imaging mode, recursive procedure, region of interest, synthetic aperture radar, video framing, video-SAR data processing, video-SAR image formation, Apertures, Azimuth, Complexity theory, Image resolution, Radar imaging, Synthetic aperture radar, Time-domain analysis. [Abstract] [bibtex-entry]


  7. Rafael Caduff, Fritz Schlunegger, Andrew Kos, and Andreas Wiesmann. A review of terrestrial radar interferometry for measuring surface change in the geosciences. Earth Surface Processes and Landforms, 40(2):208-228, 2015. Keyword(s): SAR Processing, Gamma Portable Radar Interferometer, GPRI, Review, GBSAR, InSAR, Ground-based radar, Ground-based SAR, deformation measurement, displacement, subsidence, terrestrial radar interferometry, mass movements, surface deformation. [Abstract] [bibtex-entry]


  8. Michael I. Duersch and David G. Long. Analysis of Multistatic Pixel Correlation in SAR. IEEE Transactions on Geoscience and Remote Sensing, 53(1):362-374, January 2015. Keyword(s): MIMO radar, correlation methods, image resolution, radar imaging, radar receivers, radar transmitters, synthetic aperture radar, MIMO technique, SAR, collocated array category, distributed array category, geometric correlation calculation, ground-plane image formation, multiple-input multiple-output technique, multistatic pixel correlation analysis, pixel image resolution, receiver-transmitter pair, synthetic aperture radar, wireless communication, Correlation, MIMO, Receiving antennas, Synthetic aperture radar, Backprojection, multiple-input multiple-output (MIMO), multistatic radar, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  9. Michael I. Duersch and David G. Long. Analysis of time-domain back-projection for stripmap SAR. International Journal of Remote Sensing, 36(8):2010-2036, 2015. Keyword(s): SAR Processing, FMCW, Time-Domain Back-Projection, TDBP, LFMCW, Azimuth Focusing, Motion Compensation, Interferometry, SAR Interferometry, Airborne SAR. [Abstract] [bibtex-entry]


  10. Michael I. Duersch and David G. Long. Backprojection SAR interferometry. International Journal of Remote Sensing, 36(4):979-999, 2015. Keyword(s): SAR Processing, FMCW, Time-Domain Back-Projection, TDBP, LFMCW, Azimuth Focusing, Motion Compensation, Interferometry, SAR Interferometry, Airborne SAR. [Abstract] [bibtex-entry]


  11. M. Rodriguez-Cassola, P. Prats-Iraola, F. De Zan, R. Scheiber, A. Reigber, D. Geudtner, and A. Moreira. Doppler-Related Distortions in TOPS SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 53(1):25-35, January 2015. Keyword(s): approximation theory, beam steering, compensation, distortion, Doppler radar, geophysical image processing, radar antennas, radar imaging, radar interferometry, remote sensing by radar, synthetic aperture radar, terrain mapping, TOPS SAR image, steering, radar antenna, time-varying Doppler centroid, focused SAR image, azimuth distortion, range distortion, intrapulse motion, stop-and-go approximation, SAR image formation scheme, low Earth orbit SAR, compensation strategy, TerraSAR-X TOPS, Sentinel-1 interferometric wide swath mode, Sentinel-1 interferometric extra wide swath mode, burst mode acquisition, terrain observation with progressive scan, Azimuth, Synthetic aperture radar, Doppler effect, Surfaces, Orbits, Spaceborne radar, Geometry, Burst-mode acquisitions, Sentinel-1, spaceborne SAR missions, synthetic aperture radar (SAR), Terrain Observation with Progressive Scans (TOPS), TerraSAR-X (TerraSAR-X), wide-swath SAR modes, Burst-mode acquisitions, Sentinel-1, spaceborne SAR missions, synthetic aperture radar (SAR), Terrain Observation with Progressive Scans (TOPS), TerraSAR-X (TerraSAR-X), wide-swath SAR modes. [Abstract] [bibtex-entry]


  12. M. Rodriguez-Cassola, P. Prats-Iraola, F. De Zan, R. Scheiber, A. Reigber, D. Geudtner, and A. Moreira. Doppler-Related Distortions in TOPS SAR Images. IEEE Trans. Geosci. Remote Sens., 53(1):25-35, January 2015. Keyword(s): SAR Processing, SAR Focusing, Azimuth Focusing, TOPS, Doppler radar, approximation theory, beam steering, compensation, distortion, geophysical image processing, radar antennas, radar imaging, radar interferometry, remote sensing by radar, synthetic aperture radar, terrain mapping, SAR image formation scheme, Sentinel-1 interferometric extra wide swath mode, Sentinel-1 interferometric wide swath mode, TOPS SAR image, TerraSAR-X TOPS, azimuth distortion, burst mode acquisition, compensation strategy, focused SAR image, intrapulse motion, low Earth orbit SAR, radar antenna, range distortion, steering, stop-and-go approximation, terrain observation with progressive scan, time-varying Doppler centroid, Azimuth, Doppler effect, Geometry, Orbits, Spaceborne radar, Surfaces, Synthetic aperture radar, Burst-mode acquisitions, Sentinel-1, TerraSAR-X (TerraSAR-X), Terrain Observation with Progressive Scans (TOPS), spaceborne SAR missions, synthetic aperture radar (SAR), wide-swath SAR modes. [Abstract] [bibtex-entry]


  13. Evan C. Zaugg and David G. Long. Generalized Frequency Scaling and Backprojection for LFM-CW SAR Processing. IEEE Trans. Geosci. Remote Sens., 53(7):3600-3614, July 2015. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Back-Projection, Fast-Factorized Back-Projection, FFBP, GPU, SAR focusing, Azimuth Focusing, GPU, GPU-based parallelized TDBP, graphics processing units, LFM-CW, FMCW, Airborne SAR, Approximation algorithms, Approximation methods, Bandwidth, Chirp, Doppler effect, Synthetic aperture radar, Radar imaging, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  14. Pau Prats-Iraola, Marc Rodriguez-Cassola, Francseco De Zan, Pau L´┐Żpez-Dekker, Rolf Scheiber, and Andreas Reigber. Efficient Evaluation of Fourier-Based SAR Focusing Kernels. IEEE Geoscience and Remote Sensing Letters, 11(9):1489-1493, Sep. 2014. Keyword(s): airborne radar, image resolution, image sensors, numerical analysis, optical focusing, optical transfer function, radar imaging, spaceborne radar, synthetic aperture radar, transient response, geometry, transfer function, airborne SAR sensor, spaceborne SAR sensor, IRF, 2D point target spectrum simulation, numerical analysis, bistatic SAR image resolution, spaceborne SAR image resolution, compact analytic expression, hyperbolic range history, residual phase error, focused impulse response function, SAR image formation, synthetic aperture radar image formation, Fourier-based SAR focusing kernel, Kernel, Synthetic aperture radar, Focusing, Azimuth, Transfer functions, Geometry, Spaceborne radar, SAR processing, SAR simulation, SAR spectrum, spotlight SAR, synthetic aperture radar (SAR), SAR processing, SAR simulation, SAR spectrum, spotlight SAR, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  15. Francesco De Zan, A. Parizzi, Pau Prats-Iraola, and Paco Lˇpez-Dekker. A SAR Interferometric Model for Soil Moisture. IEEE_J_GRS, 52(1):418-425, January 2014. Keyword(s): dielectric properties, hydrological techniques, radar interferometry, remote sensing by radar, soil, synthetic aperture radar, Born approximation, L-band airborne SAR data, SAR interferometric model, coherence magnitudes, complex interferometric coherences, dielectric properties, geometrical properties, interferogram triplets, phase consistency, plane waves, quantitatively synthetic aperture radar interferometric observables, scattering models, soil moisture, tomography, vertical complex wavenumbers, Coherence, L-band, Moisture, Soil moisture, Synthetic aperture radar, Coherence, soil moisture, synthetic aperture radar (SAR) interferometry. [Abstract] [bibtex-entry]


  16. M. \cCetin, I. Stojanovic, N.O. Ínhon, K.R. Varshney, S. Samadi, W.C. Karl, and A.S. Willsky. Sparsity-Driven Synthetic Aperture Radar Imaging: Reconstruction, autofocusing, moving targets, and compressed sensing. etationationToImprovePrecipitati, 31(4):27-40, July 2014. Keyword(s): SAR Processing, Autofocus, compressed sensing, image representation, radar imaging, synthetic aperture radar, SAR image formation, SAR sensing mission design, anisotropy characterization, compressed sensing-based analysis, joint autofocusing, joint imaging, phase errors, sparsity-based methods, sparsity-driven synthetic aperture radar imaging, synthesis-based sparse signal representation formulations, wide-angle SAR imaging, Image reconstruction, Imaging, Radar imaging, Radar polarimetry, Scattering, Synthetic aperture radar. [Abstract] [bibtex-entry]


  17. A. Budillon, A. Evangelista, and G. Schirinzi. Three-Dimensional SAR Focusing From Multipass Signals Using Compressive Sampling. IEEE Trans. Geosci. Remote Sens., 49(1):488 -499, jan. 2011. Keyword(s): SAR Processing, SAR Tomography, Tomography, 3D SAR data imaging, SAR tomography, compressive sampling, image formation, multipass SAR data, multipass signals, optimization problem, spaced acquisition orbits, three-dimensional synthetic aperture radar, tomographic imaging, truncated singular value decomposition technique, image sampling, optimisation, radar imaging, synthetic aperture radar, tomography;. [Abstract] [bibtex-entry]


  18. Marc Rodriguez-Cassola, Pau Prats, Gerhard Krieger, and Alberto Moreira. Efficient Time-Domain Image Formation with Precise Topography Accommodation for General Bistatic SAR Configurations. IEEE Transactions on Aerospace and Electronic Systems, 47(4):2949-2966, October 2011. Keyword(s): SAR Processing, Bistatic SAR, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, Fast Back-Projection, Back-Projection, Doppler information, German Aerospace Center, TerraSAR-X/F-SAR bistatic data, TerraSAR-X, F-SAR, nonstationary bistatic acquisitions, phase-preserving bistatic focusing, synchronization algorithm, airborne radar, backscatter, calibration, data acquisition, geophysical signal processing, radar signal processing, remote sensing by radar, spaceborne radar, synchronisation, synthetic aperture radar. [Abstract] [bibtex-entry]


  19. Xiaoqing Wu, K.C. Jezek, E. Rodriguez, S. Gogineni, F. Rodriguez-Morales, and A. Freeman. Ice Sheet Bed Mapping With Airborne SAR Tomography. IEEE Trans. Geosci. Remote Sens., 49(10):3791 -3802, oct. 2011. Keyword(s): SAR Processing, SAR Tomography, Tomography, 2D image formation, 3D tomographic ice sounding method, AD 2006 05, AD 2008 07, airborne SAR tomography, ice sheet bed mapping, ice sheet surface topography, ice thickness, multiple-phase-center VHF radar system, nadir depth sounder tracks, swath measurements, time-domain subaperture method, very high frequency radar data, geophysical image processing, glaciology, hydrological techniques, radar imaging, remote sensing by radar, synthetic aperture radar;. [Abstract] [bibtex-entry]


  20. B.D. Rigling and R.L. Moses. Polar format algorithm for bistatic SAR. IEEE_J_AES, 40(4):1147-1159, October 2004. Keyword(s): SAR Processing, Bistatic SAR, Time-Domain Back-Projection, TDBP, back-projection, bistatic far-field assumption, matched filtering, monostatic SAR image formation, phase history data, polar format algorithm, synthetic aperture radar, backpropagation, computational complexity, matched filters, radar imaging, synthetic aperture radar. [Abstract] [bibtex-entry]


  21. Brian D. Rigling and Randolph L. Moses. Polar format algorithm for bistatic SAR. Aerospace and Electronic Systems, IEEE Transactions on, 40(4):1147-1159, 2004. Keyword(s): SAR Processing, backpropagation, computational complexity, matched filters, radar imaging, synthetic aperture radar, Back-Projection, Time-Domain Back-Projection, Fast Back-Projection, Bistatic SAR, bistatic far-field assumption, matched filtering, monostatic SAR image formation, phase history data, Polar Format Algorithm, synthetic aperture radar. [Abstract] [bibtex-entry]


  22. F. Lombardini, M. Montanari, and F. Gini. Reflectivity estimation for multibaseline interferometric radar imaging of layover extended sources. IEEE Transactions on Signal Processing, 51(6):1508-1519, June 2003. Keyword(s): SAR Processing, Tomography, SAR Tomography, Multi-baseline SAR, Interferometry, SAR Interferometry, AWGN, Monte Carlo methods, amplitude estimation, radar imaging, radiowave interferometry, synthetic aperture radar APES, Capon's approach, InSAR, Monte Carlo simulation, RELAX, SAR, additive white Gaussian noise, amplitude estimation, complex orography, component sinusoidal signal, hybrid spectral estimators, layover extended sources, multibaseline interferometric radar imaging, multibaseline operation, multiplicative complex correlated noise, nonparametric estimators, parametric estimators, reflectivity estimation, spatial frequency estimation, synthetic aperture radar interferometry, terrain height, undistorted multibaseline image formation. [Abstract] [bibtex-entry]


  23. Lance M. Kaplan, James H. McClellan, and Seung-Mok Oh. Prescreening During Image Formation for Ultrawideband Radar. IEEE Transactions on Aerospace and Electronic Systems, 38(1):74-88, January 2002. Keyword(s): SAR Processing, Back-Projection, Ultra-Wideband SAR, Prescreening, Quadtree Processing, Divide and Conquer Methods. [Abstract] [bibtex-entry]


  24. Mehrdad Soumekh, David A. Nobles, Michael C. Wicks, and Gerard J. Genello. Signal Processing of Wide Bandwidth and Wide Beamwidth P-3 SAR data. IEEE Transactions on Aerospace and Electronic Systems, 37(4):1122-1141, October 2001. Keyword(s): SAR Processing, P-Band, Ultra-Wideband SAR, Time-Domain Back-Projection, TDBP, Back-Projection, RFI Suppression. [Abstract] [bibtex-entry]


  25. G.W. Davidson, Ian G. Cumming, and M.R. Ito. A chirp scaling approach for processing squint mode SAR data. IEEE_J_AES, 32(1):121-133, January 1996. Keyword(s): SAR Processing, C-band, L-band, chirp scaling algorithm, image degradations, image formation, nonlinear FM chirp scaling, phase modulation, range-variant filtering, resolution width, secondary range compression, sidelobe level, squint mode SAR data, FM radar, data compression, filtering theory, image resolution, phase modulation, radar imaging, synthetic aperture radar. [Abstract] [bibtex-entry]


  26. Nick Marechal. Tomographic formulation of interferometric SAR for terrain elevation mapping. IEEE Transactions on Geoscience and Remote Sensing, 33(3):726-739, May 1995. Keyword(s): SAR Processing, SAR Interferometry, Interferometry, InSAR, Spotlight SAR, SAR Tomography, geophysical signal processing, geophysical techniques, radar applications, radar imaging, remote sensing by radar, synthetic aperture radar, topography (Earth)SAR image, SAR image model, baseline separation, correlation, equations, geophysical measurement technique, image pair decorrelation, interferometric SAR, phase difference, radar remote sensing, spotlight synthetic aperture radar, terrain elevation mapping, terrain mapping, tomographic formulation, tomography, topographic height error variance model. [Abstract] [bibtex-entry]


  27. D.E. Wahl, P.H. Eichel, D.C. Ghiglia, and C.V. Jakowatz. Phase gradient autofocus-a robust tool for high resolution SAR phase correction. IEEE Transactions on Aerospace and Electronic Systems, 30(3):827-835, July 1994. Keyword(s): SAR Processing, Autofocus, Phase Gradient Autofocus. [Abstract] [bibtex-entry]


  28. S. El Assad, I. Lakkis, and J. Saillard. Holographic SAR image formation by coherent summation of impulse response derivatives. IEEE Transactions on Antennas and Propagation, 41(5):620-624, May 1993. Keyword(s): SAR Processing, SAR Tomography, Tomography, Peugeot 504 automobile, SAR, back-projected range responses, coherent summation, complex impulse responses, hologram, holographic image formation, impulse response derivatives, linear synthetic-aperture radar, monostatic backscattered field, near-field, physical optics approximation, radar image, target image, tomographic reconstruction, two-dimensional Fourier transform, wheat field, image reconstruction, microwave holography, physical optics, radar theory, synthetic aperture radar;. [Abstract] [bibtex-entry]


Conference articles

  1. U. Herter, H. Schmaljohann, and T. Fickenscher. Autofocus performance on multi channel SAS images in the presence of overlapping phase centers. In OCEANS 2016 MTS/IEEE Monterey, pages 1-6, September 2016. Keyword(s): geophysical image processing, image restoration, optical focusing, sonar imaging, synthetic aperture sonar, DPCA, RPC, SPGA focusing, autofocus performance, blurred images, data driven micronavigation, displaced phase center antenna, echo signals, multichannel SAS images, navigation data, overlapping phase centers, raw echo data, redundant phase centers, residual phase errors, side lobe levels, strip-map phase gradient autofocus, synthetic aperture images, synthetic aperture sonar, Apertures, Approximation algorithms, Sonar navigation, Synthetic aperture sonar, Transmitters, aperture sonar, autofocus, multi-channel, strip-map. [Abstract] [bibtex-entry]


  2. Jan Torgrimsson, Patrik Dammert, Hans Hellsten, and Lars M. H. Ulander. Autofocus and analysis of geometrical errors within the framework of fast factorized back-projection. In Proc. SPIE, volume 9093, pages 909303-909303-16, 2014. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Time-Domain Back-Projection, TDBP, Autofocus, SAR Autofocus, Geometrical Autofocus, Airborne SAR, CARABAS, factorized geometrical autofocus algorithm, fast factorized back-projection chain, gain 3 dB, intensity correlation, object function, peak-to-sidelobe ratio measurement, radar imaging, residual space variant range cell migration, ultrawideband synthetic aperture radar processing, Apertures, Electronics packaging, Geometry, Radar tracking, Synthetic aperture radar, Transforms, Autofocus, back-projection, phase gradient algorithm, PGA, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  3. Jan Torgrimsson, Patrik Dammert, Hans Hellsten, and Lars M. H. Ulander. Autofocus and analysis of geometrical errors within the framework of fast factorized back-projection. In Edmund Zelnio and Frederick D. Garber, editors, Algorithms for Synthetic Aperture Radar Imagery XXI, volume 9093, pages 10 - 25, 2014. International Society for Optics and Photonics, SPIE. Keyword(s): SAR Processing, Synthetic Aperture Radar, Time-Domain Back-Projection, TDBP, Back-Projection, Autofocus, UWB, VHF, Fast Factorized Back-Projection, FFBP. [Abstract] [bibtex-entry]


  4. Kerry E. Dungan, LeRoy A. Gorham, and Linda J. Moore. SAR digital spotlight implementation in MATLAB. In Proc. SPIE, volume 8746, pages 1-11, 2013. Keyword(s): SAR Processing, Azimuth Focusing, Digital Spotlighting, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, MATLAB. [Abstract] [bibtex-entry]


  5. Thomas M. Benson, Daniel P. Campbell, and Daniel A. Cook. Gigapixel spotlight synthetic aperture radar backprojection using clusters of GPUs and CUDA. In 2012 IEEE Radar Conference, pages 0853-0858, May 2012. Keyword(s): SAR Processing, Back-Projection, Time-Domain Back-Projection, TDBP, CUDA, GPU, SAR Focusing, Azimuth Focusing, fast Fourier transforms, graphics processing units, parallel architectures, radar computing, radar imaging, resource allocation, synthetic aperture radar, CUDA Clusters, GPU Clusters, SAR image formation, computing nodes, fast Fourier transforms, gigapixel scale data set, gigapixel spotlight synthetic aperture radar backprojection, graphics processing units, image formation algorithms, image formation framework, nonplanar surfaces, wavefront planarity, Graphics processing unit, History, Interpolation, Kernel, Scalability, Sparse matrices, Synthetic aperture radar. [Abstract] [bibtex-entry]


  6. Ricardo Portillo, Sarala Arunagiri, Patricia J. Teller, Song J. Park, Lam H. Nguyen, Joseph C. Deroba, and Dale Shires. Power versus performance tradeoffs of GPU-accelerated backprojection-based synthetic aperture radar image formation. In Proc. SPIE, volume 8060, pages 1-21, 2011. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Back-Projection, Non-Linear Flight Tracks, Curvilinear SAR, GPU, GPGPU, Graphics Processing Unit, Focusing, Azimuth Focusing, Airborne SAR, Motion Compensation. [bibtex-entry]


  7. Kenneth Ranney, Lam Nguyen, Francois Koenig, Getachew Kirose, Anthony Martone, Gregory Mazzaro, Kelly Sherbondy, Chi Tran, and Karl Kappra. Side-looking image formation with a maneuvering vehicle-mounted antenna array. In Proc. SPIE, volume 8021, pages 80211W, 2011. SPIE. [Abstract] [bibtex-entry]


  8. Scott Hensley, E. Gurrola, Leif Harcke, M. Slade, K. Quirk, M. Srinivasan, C. Lee, Sang-Ho Yun, J. Jao, B. Wilson, E. De Jong, N. Marechal, L. Weintraub, R. Dickinson, R. Bloom, G. Karamyan, and A. Lilje. Lunar topographic mapping using a new high resolution mode for the GSSR radar. In Proc. IEEE Radar Conference, pages 464-469, May 2010. Keyword(s): Doppler image formation technique, Earth based radar interferometric measurement, Goldstone Solar System Radar, Moon topography mapping, autofocusing method, bandwidth 40 MHz, geodetic control, high resolution mode, interferograms, lidar topography maps, lunar topographic mapping, lunar topographic maps, range image formation technique, spotlight mode processing, Doppler radar, Moon, astronomical image processing, image resolution, optical radar, radar imaging, radar interferometry, radar resolution. [Abstract] [bibtex-entry]


  9. Charles V. Jakowatz, Daniel E. Wahl, and David A. Yocky. A beamforming algorithm for bistatic SAR image formation. In Edmund G. Zelnio and Frederick D. Garber, editors, , volume 7699, pages 769902, 2010. SPIE. Keyword(s): SAR Processing, Bistatic SAR, Bistatic Spotlight-mode SAR, Autofocus, Autofocus in the TDBP Framework, Back-projection, Time-Domain Back-Projection, TDBP, Fast Back-projection, Fast Factorized Back-Projection, FFBP, Spotlight SAR, Spotlight-mode data, Beamforming. [bibtex-entry]


  10. Leif J. Harcke. Time-domain backprojection for precise geodetic coding of spaceborne SAR imagery. In Radar Conference, 2009 IEEE, pages 1-3, May 2009. Keyword(s): SAR Processing, TDBP, Time-Domain Back-Projection, ALOS/PALSAR instrument, D-InSAR, WGS-84 Cartesian system, backprojection image formation, differential radar interferometry, geocoded image production, geodetic coding, position measurement, precise-orbit determination, reflector, space-borne SAR, spaceborne SAR imagery, time-domain back-projection, geodesy, position measurement, radar imaging, radar interferometry, spaceborne radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  11. Charles V. Jakowatz, Daniel E. Wahl, and David A. Yocky. Beamforming as a foundation for spotlight-mode SAR image formation by backprojection. In Edmund G. Zelnio and Frederick D. Garber, editors, , volume 6970, pages 69700Q, 2008. SPIE. Keyword(s): SAR Processing, Back-projection, Time-Domain Back-Projection, TDBP, Fast Back-projection, Fast Factorized Back-Projection, FFBP, Spotlight SAR, Spotlight-mode data, Beamforming. [bibtex-entry]


  12. P.A. Rosen, S. Hensley, and C. Le. Observations and mitigation of RFI in ALOS PALSAR SAR data: Implications for the DESDynI mission. In IEEE Radar Conference, pages 1-6, May 2008. Keyword(s): DESDynI mission, L-band polarimetric radar, RFI, SAR data, radio frequency interference, synthetic aperture radar, radiofrequency interference, synthetic aperture radar. [Abstract] [bibtex-entry]


  13. Daniel E. Wahl, David A. Yocky, and Charles V. Jakowatz. An implementation of a fast backprojection image formation algorithm for spotlight-mode SAR. In Edmund G. Zelnio and Frederick D. Garber, editors, , volume 6970, pages 69700H, 2008. SPIE. Keyword(s): SAR Processing, Back-projection, Time-Domain Back-Projection, TDBP, Fast Back-projection, Fast Factorized Back-Projection, FFBP, Spotlight SAR, Spotlight-mode data. [bibtex-entry]


  14. Charles V. Jakowatz and Neall Doren. Comparison of polar formatting and back-projection algorithms for spotlight-mode SAR image formation. In Edmund G. Zelnio and Frederick D. Garber, editors, , volume 6237, pages 62370H, 2006. SPIE. Keyword(s): SAR Processing, Polar Format Algorithm, PFA, Convolution Backprojection Algorithm, CPB, Comparison of Algorithms, Spotlight SAR, Spotlight-mode data. [bibtex-entry]


  15. D. Yocky and D. Wahl. Minimum-Latency Polar Format Algorithm. In Proc. IEEE Int. Geosci. Remote Sens. Symposium, pages 3177-3179, July 2006. Keyword(s): SAR Processing, Real-Time, Real-Time Processing, Real-Time SAR, Video SAR, Polar Format Algorithm, PFA. [Abstract] [bibtex-entry]


  16. D. Yocky, D. Wahl, and C. V. Jakowatz Jr.. Spotlight-Mode SAR Image Formation Utilizing the Chirp Z-Transform in Two Dimensions. In Proc. IEEE Int. Geosci. Remote Sens. Symposium, pages 4180-4182, July 2006. Keyword(s): SAR Processing, SPECAN-like Processing, SPECAN, Chirp-Z Transform, Chirp-Z Transform-based Focusing, Spotlight SAR, Spotlight-mode data. [Abstract] [bibtex-entry]


  17. M. Blom and P. Follo. VHF SAR image formation implemented on a GPU. In IEEE International Geoscience and Remote Sensing Symposium, IGARSS '05., volume 5, pages 3352-3356, July 2005. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, GPU, Graphic Processing Unit, GPU Processing, 3D Graphics Card, VHF, Airborne SAR, FOI, CARABAS. [Abstract] [bibtex-entry]


  18. Charles V. Jakowatz, Daniel E. Wahl, David A. Yocky, Brian K. Bray, Wallace J. Bow, and John A. Richards. Comparison of algorithms for use in real-time spotlight-mode SAR image formation. In Edmund G. Zelnio and Frederick D. Garber, editors, , volume 5427, pages 108-116, 2004. SPIE. Keyword(s): SAR Processing, Real-Time, Real-Time Processing, Real-Time SAR, Video SAR, Polar Format Algorithm, PFA, Range Migration Algorithm, RMA, omega-k, Comparison of Algorithms, Comparison of Focusing Algorithms, overlapped subaperture algorithm, OSA, Spotlight SAR, Spotlight-mode data. [bibtex-entry]


  19. David Kettler, Doug Gray, and Nick Redding. The Point Spread Function for UWB SAR Imaging using Inversion of the Circular Radon Transform. In Proc. of EUSAR 2004 - 5th European Conference on Synthetic Aperture Radar, Ulm, Germany, pages 175-178, May 2004. Keyword(s): SAR Processing, Fourier-Hankel Inversion, Hankel Transform, Abel Transform, Circular Radon Transform, CRT, Radon Transform, Ultra-Wideband SAR, Airborne SAR. [Abstract] [bibtex-entry]


  20. Lam H. Nguyen, Marc Ressler, and Mehrdad Soumekh. Signal Processing and Image Formation Using Low-Frequency Ultra-Wideband Radar Data. In Russell S. Harmon, J. Thomas Broach, and John H. Holloway(Jr.), editors, Proceedings of SPIE: Detection and Remediation Technologies for Mines and Minelike Targets IX, volume SPIE 5415, pages 1053-1064, 2004. Keyword(s): SAR Processing, Ultra-Wideband SAR, Back-Projection, Wavefront Reconstruction, Wavenumber Domain Algorithm, omega-k, Image Formation, RFI Suppression, Digital Spotlighting. [Abstract] [bibtex-entry]


  21. David Small, Michael Jehle, Erich Meier, and Daniel NŘesch. Radiometric Terrain Correction Incorporating Local Antenna Gain. In Proc. of EUSAR 2004 - 5th European Conference on Synthetic Aperture Radar, Ulm, Germany, pages 929-932, May 2004. Keyword(s): SAR Geocoding, Radiometric Correction, Radiometric Terrain Correction, Radiometric Calibration, Calibration, Local Antenna Gain. [Abstract] [bibtex-entry]


  22. Andreas R. Brenner. DISTRIBUTED SAR PROCESSING IN THE TIME DOMAIN. In Proc. of EUSAR 2002 - 4th European Conference on Synthetic Aperture Radar, 2002. Keyword(s): SAR Processing, Back-projection, Time-Domain Back-Projection, PAMIR, Distributed Processing, Parallel Processing. [Abstract] [bibtex-entry]


  23. Andreas R. Brenner and Joachim H. G. Ender. First Experimental Results Achieved With The New Very Wideband SAR System PAMIR. In Proc. of EUSAR 2002 - 4rd European Conference on Synthetic Aperture Radar, pages 81-86, 2002. Keyword(s): SAR Processing, Time-Domain Back-Projection, Back-Projection, PAMIR, Phased Array Multifunctional Imaging Radar, AER-II, X-Band, High Resolution, Wideband SAR. [Abstract] [bibtex-entry]


  24. Yu Ding and David C. Munson, Jr.. A fast back-projection algorithm for bistatic SAR imaging. In Proc. Int. Conf. on Image Processing, volume 2, pages 449-452, 2002. Keyword(s): SAR Processing, Time-Domain Back-Projection, Back-projection, Bistatic SAR, image reconstruction, integral equations, radar imaging, synthetic aperture radar, tomography 2D interpolation, FFT, Fourier domain, Fourier domain data, bistatic SAR imaging, computational cost reduction, direct Fourier reconstruction, fast back-projection algorithm, image formation algorithms, integral equations, near-field imaging, nonCartesian grid, simulation results, synthetic aperture radar, tomography. [Abstract] [bibtex-entry]


  25. Lance M. Kaplan, Seung-Mok Oh, Matthew C. Cobb, and James H. McClellan. Error Analysis for Quadtree Image Formation. In International Conference on Image Processing, ICIP 2000, volume 1, pages 717-720, September 2000. Keyword(s): SAR Processing, Back-Projection, Quadtree Processing, Error Analysis, Ultra-Wideband SAR. [Abstract] [bibtex-entry]


  26. Lance M. Kaplan, Seung-Mok Oh, and James H. McClellan. Detection of Broadside Targets During Image Formation Using a Quadtree Approach. In The Record of the 2000 IEEE Radar Conference, pages 104-109, May 2000. Keyword(s): SAR Processing, Back-Projection, Quadtree Processing, Ultra-Wideband SAR, Boom-SAR, Multiscale Detection. [Abstract] [bibtex-entry]


  27. Mehrdad Soumekh, Gernot Gunther, Mark Linderman, and Ralph Kohler. Digitally-Spotlighted Subaperture SAR Image Formation Using High Performance Computing. In Edmund G. Zelnio, editor, Algorithms for Synthetic Aperture Radar Imagery VII, volume SPIE 4053, pages 260-271, 2000. Keyword(s): SAR Processing, Wavefront Reconstruction, Wavenumber Domain Algorithm, omega-k, RFI Suppression, Subaperture Processing, Parallel Processing, Digital Spotlighting, Slow-Time Upsampling, Alias-free Processing, Real-Time Processing, High Performance Computing, FFTW. [Abstract] [bibtex-entry]


  28. Mehrdad Soumekh, Steve Worrell, Edward G. Zelnio, and Brett Keaffaber. SAR Wavefront Reconstruction Using Motion Compensated Phase History (Polar Format) Data and DPCA-Based GMTI. In Edmund G. Zelnio, editor, Algorithms for Synthetic Aperture Radar Imagery VII, volume SPIE 4053, pages 64-75, 2000. Keyword(s): SAR Processing, Wavefront Reconstruction, Wavenumber Domain Algorithm, omega-k, Polar Format Algorithm, X-Band, Squinted SAR, Motion Compensation, Monopulse SAR, MTI, GMTI. [Abstract] [bibtex-entry]


  29. Gerard J. Genello(Jr.), Michael C. Wicks, and Mehrdad Soumekh. Alias-free Processing of P-3 Data. In Edmund G. Zelnio, editor, Algorithms for Synthetic Aperture Radar Imagery VI, volume SPIE 3721, pages 189-200, 1999. Keyword(s): SAR Processing, Back-Projection, Wavefront Reconstruction, Wavenumber Domain Algorithm, omega-k, RFI Suppression, Digital Spotlighting, Slow-Time Upsampling, Alias-free Processing, P-Band, Ultra-Wideband SAR, FOPEN, Airborne SAR. [Abstract] [bibtex-entry]


  30. P. Tsakalides and C.L. Nikus. A new phase gradient autofocus technique for high resolution image formation based on fractional lower-order statistics. In Electronics, Circuits and Systems, 1999. Proceedings of ICECS '99. The 6th IEEE International Conference on, volume 2, pages 667-670, September 1999. Keyword(s): SAR Processing, Autofocus, Phase Gradient Autofocus. [bibtex-entry]


  31. Ali F. Yegulalp. Fast Backprojection Algorithm for Synthetic Aperture Radar. In The Record of the 1999 IEEE Radar Conference, pages 60-65, 1999. Keyword(s): SAR Processing, Back-Projection, Convolution Back-Projection, FOPEN, Ultra-Wideband SAR, Image Formation, Focusing, Motion Compensation, Time-Domain Back-Projection, TDBP. [Abstract] [bibtex-entry]


  32. Mehrdad Soumekh. Range Stacking: An Interpolation-free SAR Reconstruction Algorithm. In Edmund G. Zelnio, editor, Algorithms for Synthetic Aperture Radar Imagery V, volume SPIE 3370, pages 13-24, 1998. Keyword(s): SAR Processing, Range Stacking Algorithm, Wavefront Reconstruction, Wavenumber Domain Algorithm, omega-k, Back-Projection, Time-Domain Back-Projection, TDBP, Wideband SAR, Squinted SAR, FOPEN, Motion Compensation. [Abstract] [bibtex-entry]


  33. Jung Ah C. Lee, Orhan Arikan, and David C. Munson, Jr.. Formulation of a General Imaging Algorithm for High-Resolution Synthetic Aperture Radar. In ICASSP '96, International Conference on Acoustics, Speech, and Signal Processing, volume 4, pages 2092-2095, May 1996. Keyword(s): SAR Processing, Backprojection, Convolution Backprojection. [Abstract] [bibtex-entry]


  34. John W. McCorkle and Martin Rofheart. Order N^2 log(N) Backprojector Algorithm for Focusing Wide-Angle Wide-Bandwidth Arbitrary-Motion Synthetic Aperture Radar. In Gerald S. Ustach, editor, Radar Sensor Technology, volume SPIE 2747, pages 25-36, 1996. Keyword(s): SAR Processing, Back-Projection, Fast Back-Projection, Quadtree Processing, Time-Domain Back-Projection, Wideband SAR, Focusing, Motion Compensation. [Abstract] [bibtex-entry]


  35. B. Walker, G. Sander, M. Thompson, B. Burns, R. Fellerhoff, and D. Dubbert. A high-resolution, four-band SAR Testbed with real-time image formation. In Geoscience and Remote Sensing Symposium, 1996. IGARSS '96. 'Remote Sensing for a Sustainable Future.', International, volume 3, May 1996. [bibtex-entry]


  36. Ron S. Goodman, Sreenidhi Tummala, and Walter G. Carrara. Issues in Ultra-Wideband, Widebeam SAR Image Formation. In The Record of the 1995 IEEE Radar Conference, pages 479-485, May 1995. Keyword(s): SAR Processing, Range Migration Algorithm, Wavefront Reconstruction, Wavenumber Domain Algorithm, omega-k, RFI Suppression, Motion Compensation, Autofocus Techniques, Ultra-Wideband SAR, Sidelobe Control, P-Band, FOPEN, Airborne SAR. [Abstract] [bibtex-entry]


  37. D.E. Wahl, C.V. Jakowatz, and P.A. Thompson. New approach to strip-map SAR autofocus. In Digital Signal Processing Workshop, 1994., 1994 Sixth IEEE, pages 53-56, October 1994. Keyword(s): SAR Processing, Autofocus, Phase Curvature Autofocus, Phase Gradient Autofocus. [Abstract] [bibtex-entry]


  38. Ian G. Cumming, P. F. Kavanagh, and M. R. Ito. Resolving the Doppler Ambiguity for Spaceborne Synthetic Aperture Radar. In IGARSS '86, International Geoscience and Remote Sensing Symposium, volume 3, pages 1639-1643, 1986. Keyword(s): SAR Processing, Doppler Centroid, Doppler Centroid Estimation, Azimuth Look Correlation, Clutterlock, Doppler Ambiguity Resolver, DAR, Doppler Rate Estimation, Autofocus. [Abstract] [bibtex-entry]


Miscellaneous

  1. Daniel Svensson and Jan Johansson. Suppression of Radio Frequency Interference in Low Frequency SAR. Master's thesis, Chalmers University of Technology, 2004. Keyword(s): SAR Processing, RFI Suppression, CARABAS, Airborne SAR, Analogue TV, VHF SAR. [Abstract] [bibtex-entry]


  2. David T. Sandwell. SAR Image Formation: ERS SAR Processor Coded in Matlab. Note: Lecture Notes - Radar and Sonar Interferometry, 2002. Keyword(s): SAR, SAR Processing, Digitizing, ERS, MATLAB, Range-Doppler, Range Compression, Range Migration, Azimuth Processing, SLC, Raw Data, Parameter Files, Squinted SAR, Example Processor. [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:40:07 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html