BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE

Publications about 'geometries'

Thesis

  1. Hayden J. Callow. Signal Processing for Synthetic Aperture Sonar Image Enhancement. PhD thesis, University of Canterbury, 2003. Keyword(s): SAR Processing, Autofocus, Phase Gradient Autofocus, Stripmap, Stripmap PGA, Stripmap Phase Gradient Autofocus, SAS, Synthetic Aperture Sonar. [Abstract] [bibtex-entry]


Articles in journal or book chapters

  1. Homa Ansari, Francesco De Zan, Alessandro Parizzi, Michael Eineder, Kanika Goel, and Nico Adam. Measuring 3-D Surface Motion With Future SAR Systems Based on Reflector Antennae. IEEE Geoscience and Remote Sensing Letters, 13(2):272-276, February 2016. Keyword(s): artificial satellites, radar interferometry, reflector antennas, remote sensing by radar, synthetic aperture radar, 3D surface motion measurement, SAR system, reflector antennae, interferometric synthetic aperture radar, 1D line-of-sight motion measurement, left-looking observation, right-looking observation, SAR acquisition mode, BiDiSAR, SuperSAR, electronic beam steering, squinted SAR geometry, satellite constellation, data processing, Synthetic aperture radar, Orbits, Geometry, Satellites, Motion measurement, Antenna measurements, Sensitivity, Azimuth shifts, error analysis, interferometric SAR (InSAR), SAR acquisition geometry, squinted SAR, 3-D surface motion, Azimuth shifts, error analysis, interferometric SAR (InSAR), SAR acquisition geometry, squinted SAR, 3-D surface motion. [Abstract] [bibtex-entry]


  2. A. Recchia, Andrea Monti Guarnieri, Antonio Broquetas, and Antonio Leanza. Impact of Scene Decorrelation on Geosynchronous SAR Data Focusing. IEEE Transactions on Geoscience and Remote Sensing, 54(3):1635-1646, March 2016. Keyword(s): SAR Processing, SAR focusing, autofocus, atmospheric phase, atmospheric phase screen, APS, decorrelation, temporal decorrelation, geostationary, geosynchronous, radar clutter, radar resolution, synthetic aperture radar, Billingsley intrinsic clutter motion model, GEOSAR signal-to-clutter ratio, azimuth resolution, clutter energy, geosynchronous SAR data focusing, ground based radar experiment, power spectral density, scene decorrelation, two-way propagation losses, Azimuth, Clutter, Decorrelation, Focusing, Synthetic aperture radar, Thyristors, Focusing, Geosynchronous Synthetic Aperture Radar (GEOSAR), scene decorrelation, wind-blown clutter. [Abstract] [bibtex-entry]


  3. Viet Thuy Vu and Mats I. Pettersson. Fast Backprojection Algorithms Based on Subapertures and Local Polar Coordinates for General Bistatic Airborne SAR Systems. IEEE Trans. Geosci. Remote Sens., 54(5):2706-2712, May 2016. Keyword(s): SAR Processing, Back-Projection, Fast Back-Projection, Fast-Factorized Back-Projection, Azimuth Focusing, airborne radar, synthetic aperture radar, bistatic CARABAS-like data, fast backprojection algorithms, general bistatic airborne SAR systems, half-power beamwidths, image quality measurements, interpolation step, local polar coordinates, peak sidelobe ratio, subapertures, Image reconstruction, Receivers, Signal processing algorithms, Synthetic aperture radar, Time-domain analysis, Transmitters, Algorithm, bistatic, fast backprojection, polar coordinates, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  4. Viet Thuy Vu and Mats I. Pettersson. Nyquist Sampling Requirements for Polar Grids in Bistatic Time-Domain Algorithms. IEEE Transactions on Signal Processing, 63(2):457-465, January 2015. Keyword(s): SAR Processing, Time-Domain Back-Projection, TDBP, Fast-Factorized Back-Projection, FFBP, Bistatic SAR, Bistatic Fast-Factorized Back-Projection, BiFFBP, radar signal processing, signal sampling, Nyquist sampling, airborne bistatic system, bistatic CARABAS-II like data, bistatic cases, bistatic time-domain algorithms, general bistatic geometry, polar grids, Geometry, Radar polarimetry, Receivers, Signal processing algorithms, Synthetic aperture radar, Time-domain analysis, Transmitters, Bistatic, Nyquist sampling, SAR, fast backprojection. [Abstract] [bibtex-entry]


  5. J. N. Ash. An Autofocus Method for Backprojection Imagery in Synthetic Aperture Radar. IEEE Geoscience and Remote Sensing Letters, 9(1):104-108, January 2012. Keyword(s): SAR Processing, Autofocus, autoregressive processes, convolution, digital elevation models, geophysical image processing, geophysical techniques, radar imaging, synthetic aperture radar, convolution backprojection, autofocus method, backprojection imagery, autofocus routine, spotlight-mode synthetic aperture radar data, image sharpness, imaging geometry, wide-angle aperture, digital elevation map, image-quality-based autofocus approach, natural geometric interpretation, optimal single-pulse phase correction, quartic polynomial, sequential imaging application, autoregressive backprojection, Synthetic aperture radar, Imaging, Apertures, Measurement, Optimization, History, Azimuth, Autofocus, autoregressive backprojection (ARBP), convolution BP (CBP) imaging, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  6. Hengxing Lan, Langping Li, Hongjiang Liu, and Zhihua Yang. Complex Urban Infrastructure Deformation Monitoring Using High Resolution PSI. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2):643-651, April 2012. Keyword(s): SAR Processing, Persistent Scatterer Interferometry, PSI, China, building infrastructures, complex urban infrastructure deformation monitoring, economic center, engineering geological settings, engineering structures, geometries, ground surface subsidence, high resolution PSI, intensive infrastructure development, persistent scatterer interferometry technology, spotlight mode TerraSAR-X images, thermal dilation, transportation infrastructures, urban vulnerability, building, computerised monitoring, deformation, geophysical image processing, remote sensing;. [Abstract] [bibtex-entry]


  7. Ling Wang, M. Cheney, and B. Borden. Multistatic Radar Imaging of Moving Targets. IEEE Transactions on Aerospace and Electronic Systems, 48(1):230 -242, jan. 2012. Keyword(s): Doppler SAR, filtered backprojection, inverse synthetic aperture radar, linearized imaging theory, matched filtering, moving target, moving target tomography, multistatic radar imaging, narrowband waveform, object distribution, phase space imaging distribution, phase-space imaging formula, phase-space point-spread function, range-Doppler imaging, scattered wave spectral aspect, speed of light, undergoing linear motion, Doppler radar, geometry, image sensors, phase space methods, radar imaging, scattering, synthetic aperture radar, target tracking, tomography;. [Abstract] [bibtex-entry]


  8. Guido Gatti, Stefano Tebaldini, Mauro Mariotti d'Alessandro, and Fabio Rocca. ALGAE: A Fast Algebraic Estimation of Interferogram Phase Offsets in Space-Varying Geometries. IEEE Trans. Geosci. Remote Sens., 49(6):2343-2353, June 2011. Keyword(s): SAR Processing, SAR Tomography, Tomography, ALGAE, DLR, E-SAR airborne system, ESA BIOSAR 2008 campaign, European Space Agency, Experimental SAR airborne system, German Aerospace Center, P-band data set, airborne multipass interferometric campaigns, data stack phase locking, incidence angle sensitivity, interferogram phase offset algebraic estimation, interferogram phase offset compensation, multipass InSAR analysis, null space component identification, space varying geometries, synthetic aperture radar interferometry, system geometry space varying nature, system geometry variation, terrain topography estimation, terrain topography retrieval, geophysical signal processing, linear algebra, radar interferometry, radar signal processing, remote sensing by radar, synthetic aperture radar, terrain mapping, topography (Earth);. [Abstract] [bibtex-entry]


  9. Pau Prats, Rolf Scheiber, Andreas Reigber, Christian Andres, and Ralf Horn. Estimation of the Surface Velocity Field of the Aletsch Glacier Using Multibaseline Airborne SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 47(2):419-430, Feb. 2009. Keyword(s): SAR Processing, InSAR, DInSAR, airborne SAR, glaciology, hydrological techniques, SAR Interferometry, Interferometry, remote sensing by radar, synthetic aperture radar, Aletsch Glacier, Alps, German Aerospace Center, L-band, airborne interferometric synthetic aperture radar, data acquisition, differential interferometry, experimental SAR system, line-of-sight displacement, multisquint approach, navigation system, residual motion errors, surface velocity field estimation, temperate glaciers, ESAR. [Abstract] [bibtex-entry]


  10. Marijke Vandewal, Rainer Speck, and Helmut Süss. Efficient and Precise Processing for Squinted Spotlight SAR through a Modified Stolt Mapping. EURASIP Journal on Advances in Signal Processing, 2007:1-7, 2007. [Abstract] [bibtex-entry]


  11. Andreas Reigber, E. Alivizatos, A. Potsis, and Alberto Moreira. Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation. Radar, Sonar and Navigation, IEE Proceedings, 153(3):301-310, 2006. Keyword(s): SAR Processing, omega-k, Range Migration Algorithm, Wavenumber Domain Algorithm, Extended omega-k, EOK, Extended Wavenumber Domain Algorithm, Motion Compensation, Squinted SAR, Airborne SAR, E-SAR, ECS, Extended Chirp Scaling. [Abstract] [bibtex-entry]


  12. M. Eineder and N. Adam. A maximum-likelihood estimator to simultaneously unwrap, geocode, and fuse SAR interferograms from different viewing geometries into one digital elevation model. Geoscience and Remote Sensing, IEEE Transactions on, 43(1):24 - 36, jan. 2005. Keyword(s): SAR interferogram fusion, SAR interferogram geocoding, SAR interferogram unwrapping, SRTM, Shuttle Radar Topography Mission, critical phase-unwrapping, digital elevation model, geometric baseline error estimates, heterogeneous synthetic aperture radar interferograms, incidence angle, interferometric multiangle observations, interferometric multibaseline observations, map geometry, maximum-likelihood algorithm, maximum-likelihood estimation, periodic likelihood function, radar baseline, radar heading angle, radar wavelength, rugged terrain, scatterer height, terrain mapping, viewing geometries, geophysical signal processing, maximum likelihood estimation, radar signal processing, radiowave interferometry, remote sensing by radar, synthetic aperture radar, terrain mapping;. [Abstract] [bibtex-entry]


  13. G. Fornaro, E. Sansosti, R. Lanari, and M. Tesauro. Role of processing geometry in SAR raw data focusing. IEEE Transactions on Aerospace and Electronic Systems, 38(2):441-454, April 2002. Keyword(s): SAR Processing, 2D frequency SAR processing, SAR raw data focusing, airborne remote sensing, conical reference systems, geometric artifacts, high-resolution images, high-resolution microwave images, interferometric SAR, microwave remote sensing, phase aberrations, processing geometry role, received backscattered echoes, space-invariant component, space-variant component, spaceborne remote sensing, squinted geometries, squinted raw data acquisitions, stripmap mode, airborne radar, image registration, radar imaging, radar resolution, remote sensing by radar, sensor fusion, spaceborne radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  14. Howard A. Zebker, Paul A. Rosen, and Scott Hensley. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of Geophysical Research: Solid Earth, 102(B4):7547-7563, 1997. Keyword(s): Remote sensing, Instruments and techniquesInstruments and techniques. [Abstract] [bibtex-entry]


  15. Nick Marechal. Tomographic formulation of interferometric SAR for terrain elevation mapping. IEEE Transactions on Geoscience and Remote Sensing, 33(3):726-739, May 1995. Keyword(s): SAR Processing, SAR Interferometry, Interferometry, InSAR, Spotlight SAR, SAR Tomography, geophysical signal processing, geophysical techniques, radar applications, radar imaging, remote sensing by radar, synthetic aperture radar, topography (Earth)SAR image, SAR image model, baseline separation, correlation, equations, geophysical measurement technique, image pair decorrelation, interferometric SAR, phase difference, radar remote sensing, spotlight synthetic aperture radar, terrain elevation mapping, terrain mapping, tomographic formulation, tomography, topographic height error variance model. [Abstract] [bibtex-entry]


  16. Claudio Prati and Fabio Rocca. Focusing SAR Data With Time-Varying Doppler Centroid. IEEE Transactions on Geoscience and Remote Sensing, 30(3):550-559, May 1992. Keyword(s): SAR Processing, Doppler Centroid, Doppler Centroid Estimation, Clutterlock. [Abstract] [bibtex-entry]


  17. R. Keith Raney. An exact wide field digital imaging algorithm. International Journal of Remote Sensing, 13:991-998, March 1992. Keyword(s): SAR Processing, Chirp Scaling, Extended Chirp Scaling, ECS. [Abstract] [bibtex-entry]


Conference articles

  1. Othmar Frey, Charles Werner, Andrea Manconi, and Roberto Coscione. Mobile Mapping of Surface Displacements Using a Novel Compact UAV-Borne / Car-Borne InSAR System. In American Geophysical Union, Fall Meeting 2020, 2020. [Abstract] [bibtex-entry]


  2. Jan Torgrimsson, Patrik Dammert, Hans Hellsten, and Lars M. H. Ulander. Autofocus and analysis of geometrical errors within the framework of fast factorized back-projection. In Proc. SPIE, volume 9093, pages 909303-909303-16, 2014. Keyword(s): SAR Processing, Fast-Factorized Back-Projection, FFBP, Time-Domain Back-Projection, TDBP, Autofocus, SAR Autofocus, Geometrical Autofocus, Airborne SAR, CARABAS, factorized geometrical autofocus algorithm, fast factorized back-projection chain, gain 3 dB, intensity correlation, object function, peak-to-sidelobe ratio measurement, radar imaging, residual space variant range cell migration, ultrawideband synthetic aperture radar processing, Apertures, Electronics packaging, Geometry, Radar tracking, Synthetic aperture radar, Transforms, Autofocus, back-projection, phase gradient algorithm, PGA, synthetic aperture radar (SAR). [Abstract] [bibtex-entry]


  3. Jan Torgrimsson, Patrik Dammert, Hans Hellsten, and Lars M. H. Ulander. Autofocus and analysis of geometrical errors within the framework of fast factorized back-projection. In Edmund Zelnio and Frederick D. Garber, editors, Algorithms for Synthetic Aperture Radar Imagery XXI, volume 9093, pages 10 - 25, 2014. International Society for Optics and Photonics, SPIE. Keyword(s): SAR Processing, Synthetic Aperture Radar, Time-Domain Back-Projection, TDBP, Back-Projection, Autofocus, UWB, VHF, Fast Factorized Back-Projection, FFBP. [Abstract] [bibtex-entry]


  4. David Small, Nuno Miranda, and Erich Meier. A revised radiometric normalisation standard for SAR. In Proc. IEEE Int. Geosci. Remote Sens. Symp., volume 4, pages 566-569, July 2009. Keyword(s): SAR Processing, ASAR, ERS-1, Earth ellipsoid model, Earth terrain-model, PALSAR, RADARSAT-1, SAR sensors, TerraSAR-X, beta nought SAR radiometry, elevation models, gamma nought SAR radiometry, image geolocation accuracy, radar cross section, radar imaging, radar measurements, radar scattering, radar terrain factors, radiometric calibration, radiometric normalisation standard, sigma nought SAR radiometry, terrain variations, radar cross-sections, radar imaging, radiometry, synthetic aperture radar, terrain mapping. [Abstract] [bibtex-entry]


  5. Marcelo Albuquerque, Pau Prats, and Rolf Scheiber. Applications of Time-Domain Back-Projection SAR Processing in the Airborne Case. In European Conference on Synthetic Aperture Radar (EUSAR), pages 4, June 2008. VDE Verlag GmbH. Keyword(s): SAR Processsing, Time-Domain Back-Projection, TDBP, Back-Projection, Synthetic Aperture Radar (SAR), motion compensation, tomography, Airborne SAR, E-SAR, Topography-dependent motion compensation, Motion Compensation, MoComp, Interferometry, Non-Linear SAR, Non-Linear Flight Tracks. [Abstract] [bibtex-entry]


  6. M. Lachaise, Michael Eineder, and Thomas Fritz. Multi baseline SAR acquisition concepts and phase unwrapping algorithms for the TanDEM-X mission. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pages 5272-5276, July 2007. Keyword(s): TerraSAR-X, TanDEM-X, AD 2009, HRTI-3 specifications, TanDEM-X mission, TerraSAR-X add-on for Digital Elevation Measurement, bistatic mode interferometric SAR data, controlled helix two satellite configuration, digital elevation model, global DEM, global land surface, multibaseline SAR acquisition concept, multibaseline SAR phase unwrapping algorithm, artificial satellites, data acquisition, digital elevation models, geophysical signal processing, radar interferometry, radar signal processing, remote sensing by radar, spaceborne radar, synthetic aperture radar. [Abstract] [bibtex-entry]


  7. Armin W. Doerry, Dale F. Dubbert, Martin Thompson, and Vivian D. Gutierrez. A portfolio of fine resolution Ka-band SAR images: part I. In Robert N. Trebits and James L. Kurtz, editors, Proc. of SPIE Vol. 5788, Radar Sensor Technology IX, number 1, pages 13-24, 2005. SPIE. Keyword(s): SAR Processing, High Resolution, Fine Resolution, Sandia National Laboratoiries, Ka-Band. [Abstract] [bibtex-entry]


  8. Armin W. Doerry, Dale F. Dubbert, Martin Thompson, and Vivian D. Gutierrez. A portfolio of fine resolution Ka-band SAR images: part II. In Robert N. Trebits and James L. Kurtz, editors, Proc. of SPIE Vol. 5788, Radar Sensor Technology IX, number 1, pages 185-196, 2005. SPIE. Keyword(s): SAR Processing, High Resolution, Fine Resolution, Sandia National Laboratoiries, Ka-Band. [Abstract] [bibtex-entry]


  9. Joachim H. G. Ender, I. Walterscheid, and Andreas R. Brenner. New aspects of bistatic SAR: processing and experiments. In IGARSS '04, International Geoscience and Remote Sensing Symposium, September 2004. Keyword(s): SAR Processing, Bistatic SAR, Bistatic Processing, Back-Projection, omega-k, Range Migration Algorithm, Wavenumber Domain Algorithm, Range-Doppler Algorithm, Airborne SAR. [Abstract] [bibtex-entry]


  10. H.J. Callow, M.P. Hayes, and P.T. Gough. Stripmap phase gradient autofocus. In OCEANS 2003. Proceedings, volume 5, pages 2414-2421, September 2003. Keyword(s): SAR Processing, Autofocus, Phase Curvature Autofocus, Phase Gradient Autofocus, PGA, SPGA, Stripmap Phase Gradient Algorithm, Synthetic Aperture Sonar, SAS. [Abstract] [bibtex-entry]


  11. Joachim H. G. Ender. The meaning of k-space for classical and advanced SAR techniques. In International Symposium Physics in Signal and Image Processing, PSIP 2001, Marseille, pages 23-38, January 2001. Keyword(s): SAR Processing, k-Space, Airborne SAR, Bistatic SAR. [Abstract] [bibtex-entry]


BACK TO INDEX BACK TO OTHMAR FREY'S HOMEPAGE


Disclaimer:

Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.




Last modified: Mon Feb 1 16:39:56 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .


This document was translated from BibTEX by bibtex2html