Publications about 'Temperature'


  1. Albert Monteith. Temporal Characteristics of Boreal Forest Radar Measurements. PhD thesis, Chalmers University of Technology, 2020. Keyword(s): SAR Tomography, BorealScat. [Abstract] [bibtex-entry]

Articles in journal or book chapters

  1. S. Leinss, H. Lwe, M. Proksch, and A. Kontu. Modeling the evolution of the structural anisotropy of snow. The Cryosphere, 14(1):51-75, 2020. [Abstract] [bibtex-entry]

  2. Albert R. Monteith and Lars M. H. Ulander. Temporal Survey of P- and L-Band Polarimetric Backscatter in Boreal Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10):3564-3577, October 2018. Keyword(s): SAR Tomography, backscatter, radar imaging, radar polarimetry, remote sensing by radar, spaceborne radar, synthetic aperture radar, vegetation mapping, temporal survey, L-band polarimetric backscatter, boreal forests, environmental conditions, seasonal variations, backscattered radar signal, biomass retrieval scheme, synthetic aperture radar data, electromagnetic scattering mechanisms, biomass estimation algorithms, L-band SAR missions, temporal changes, HV-polarized P, L-band radar backscatter, boreal forest site, environmental parameters, mature Norway spruce, above-ground biomass, approximately 250 tons/ha, BorealScat tower-based scatterometer, L-band backscatter, HH/VV backscatter ratio, average backscatter, double-bounce scattering, severe temporal decorrelation, P-band temporal coherence, mass 250.0 ton, time 5.0 min, noise figure 4.0 dB to 10.0 dB, Synthetic aperture radar, L-band, Backscatter, Biomass, Antenna arrays, Coherence, Backscatter, boreal forest, L-band, P-band, synthetic aperture radar (SAR), temporal coherence, time series. [Abstract] [bibtex-entry]

  3. S. K. Chan, R. Bindlish, P. E. O'Neill, E. Njoku, T. Jackson, A. Colliander, F. Chen, Mariko S. Burgin, S. Dunbar, J. Piepmeier, S. Yueh, D. Entekhabi, M. H. Cosh, T. Caldwell, J. Walker, X. Wu, A. Berg, T. Rowlandson, A. Pacheco, H. McNairn, M. Thibeault, J. Martinez-Fernandez, Angel Gonzalez-Zamora, M. Seyfried, D. Bosch, P. Starks, D. Goodrich, J. Prueger, M. Palecki, E. E. Small, M. Zreda, J. C. Calvet, W. T. Crow, and Y. Kerr. Assessment of the SMAP Passive Soil Moisture Product. IEEE Transactions on Geoscience and Remote Sensing, 54(8):4994-5007, August 2016. Keyword(s): hydrological techniques, moisture, remote sensing by radar, soil, L-band radar, L-band radiometer, Level 2 Passive Soil Moisture Product, NASA Distributed Active Archive Center at the National Snow and Ice Data Center, NASA SMAP satellite mission, National Aeronautics and Space Administration, SMAP Passive Soil Moisture product, V-pol Single Channel Algorithm, freeze-thaw state, high-resolution soil moisture global mapping, radar irrecoverable hardware failure, radiometer-only soil moisture product, soil moisture estimates, soil moisture retrievals, Agriculture, Data models, Microwave radiometry, NASA, Soil moisture, Spatial resolution, Brightness temperature, L-band, Level 2 Passive Soil Moisture Product, Level 3 Daily Composite Version, Soil Moisture Active Passive (SMAP), land emission, passive microwave remote sensing, soil moisture, tau-omega model, validation. [Abstract] [bibtex-entry]

  4. J. Pan, M. Durand, M. Sandells, J. Lemmetyinen, E. J. Kim, J. Pulliainen, A. Kontu, and C. Derksen. Differences Between the HUT Snow Emission Model and MEMLS and Their Effects on Brightness Temperature Simulation. IEEE Transactions on Geoscience and Remote Sensing, 54(4):2001-2019, April 2016. Keyword(s): radiative transfer, remote sensing, snow, HUT snow emission model, Helsinki University of Technology, brightness temperature simulation, snow water equivalent retrieval algorithm, passive microwave measurement, multiple-layer HUT model, Microwave Emission Model of Layered Snowpacks, scattered intensity, radiative transfer equation, one-flux equation, two-flux theory, HUT scattering coefficient, trapped-radiation, natural snow cover, Sodankyla, Finland, Churchill, Canada, Colorado, USA, snow grain size was, deep snow, Born approximation, root-mean-square error, Snow, Mathematical model, Scattering, Grain size, Microwave theory and techniques, Ice, Correlation, Model comparison, passive microwave remote sensing, snow, Model comparison, passive microwave remote sensing, snow. [Abstract] [bibtex-entry]

  5. Fadwa Alshawaf, T. Fuhrmann, A. Knpfler, X. Luo, Michael Mayer, Stefan Hinz, and B. Heck. Accurate Estimation of Atmospheric Water Vapor Using GNSS Observations and Surface Meteorological Data. IEEE Transactions on Geoscience and Remote Sensing, 53(7):3764-3771, July 2015. Keyword(s): atmospheric humidity, atmospheric temperature, remote sensing, satellite navigation, time series, remote sensing data, temporal variation, spatial variation, Global Navigation Satellite System, time series, precipitable water vapor content, precise point positioning, absolute precipitable water vapor, GNSS observations, GNSS site, surface temperature measurements, GNSS-based delay, MEdium Resolution Imaging Spectrometer sensor, mean RMS value, GNSS-based total precipitable water vapor, Weather Research and Forecasting Modeling System, WRF model simulations, atmospheric water vapor estimation, surface meteorological data, Global Positioning System, Delays, Temperature measurement, Atmospheric modeling, Atmospheric measurements, Satellites, Atmospheric sounding, Global Navigation Satellite System(s) (GNSS), MEdium Resolution Imaging Spectrometer (MERIS), precipitable water vapor (PWV), Weather Research and Forecasting (WRF), Atmospheric sounding, Global Navigation Satellite System(s) (GNSS), MEdium Resolution Imaging Spectrometer (MERIS), precipitable water vapor (PWV), Weather Research and Forecasting (WRF). [Abstract] [bibtex-entry]

  6. Silvan Leinss, Giuseppe Parrella, and Irena Hajnsek. Snow height determination by polarimetric phase differences in X-band SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(9):3794-3810, Sept 2014. Keyword(s): hydrological techniques, remote sensing by radar, snow, synthetic aperture radar, AD 2012 01, AD 2012 12 to 2013 04, CPD temporal evolution, Finland, HH polarization, Sodankylae city, TanDEM-X, TanDEM-X acquisitions, TerraSAR-X acquisitions, VV polarization, X-band SAR acquisitions, X-band SAR data, aligned elliptical particles, computer tomography observations, copolar phase difference, fresh snow depth, polarimetric phase difference, snow height determination, snow microstructure, subsequent recrystallization process, temperature-gradient-driven recrystallization process, weather station data, Backscatter, Scattering, Snow, Soil, Soil measurements, Synthetic aperture radar, Temperature measurement, Birefringence, TanDEM-X, TerraSAR-X, VV-HH phase difference, copolar phase difference, dry snow, fresh snow, polarimetry, snow anisotropy, snow microstructure, synthetic aperture radar. [Abstract] [bibtex-entry]

  7. Gianfranco Fornaro, Diego Reale, and Simona Verde. Bridge Thermal Dilation Monitoring With Millimeter Sensitivity via Multidimensional SAR Imaging. IEEE Geosci. Remote Sens. Lett., 10(4):677-681, July 2013. Keyword(s): SAR Processing, SAR interferometry, Interferometry, differential interferometry, InSAR, DInSAR, Persistent Scatterer Interferometry, PSI, SAR Tomography, Tomography, Spaceborne SAR, TerraSAR-X, X-band, Bridges, Imaging, Interferometry, Monitoring, Remote sensing, Synthetic aperture radar, Temperature measurement, geophysical techniques, radar imaging, remote sensing by radar, synthetic aperture radar, Italy, Musmeci bridge, Potenza, SAR processing chains, SAR sensors, TerraSAR-X data set, accurate monitoring capabilities, bridge static structure, bridge thermal dilation monitoring, interferometric approaches, man-made structures, millimeter sensitivity, multidimensional SAR imaging, multidimensional imaging approach, spatial resolution, synthetic aperture radar, system sensitivity, thermal coefficient, Multidimensional SAR imaging (MDI-SAR), SAR tomography, TerraSAR-X (TSX), synthetic aperture radar (SAR), thermal dilation;. [Abstract] [bibtex-entry]

  8. R. Magagi, A. A. Berg, K. Goita, S. Belair, T. J. Jackson, B. Toth, A. Walker, H. McNairn, P. E. O'Neill, Mahta Moghaddam, I. Gherboudj, A. Colliander, M. H. Cosh, Mariko S. Burgin, J. B. Fisher, S. B. Kim, I. Mladenova, N. Djamai, L. P. B. Rousseau, J. Belanger, J. Shang, and A. Merzouki. Canadian Experiment for Soil Moisture in 2010 (CanEx-SM10): Overview and Preliminary Results. IEEE Transactions on Geoscience and Remote Sensing, 51(1):347-363, January 2013. Keyword(s): land surface temperature, remote sensing, soil, vegetation, AD 2010, AD 2010 05 31 to 2010 06, AMSR-E soil moisture, CanEx-SM10, Canada, Canadian experiment, National Snow and Ice Data Center, SMOS data, SMOS mission, SMOS soil moisture product, Saskatchewan, active microwave measurement, agricultural area, airborne L-band brightness temperatures, airborne L-band radiometer data, airborne platform, boreal forested area, ocean salinity, passive microwave measurement, radio frequency, reflected soil moisture measurements, satellite platform, soil condition, soil ground-based measurements, soil moisture, soil temperature profiles, vegetation characteristics, vegetation condition, Moisture measurement, Satellites, Soil measurements, Soil moisture, Temperature measurement, Vegetation mapping, Agricultural and boreal forested areas, Soil Moisture and Ocean Salinity (SMOS), brightness temperature, soil moisture, validation. [Abstract] [bibtex-entry]

  9. Lorenzo Iannini and Andrea Monti Guarnieri. Atmospheric Phase Screen in Ground-Based Radar: Statistics and Compensation. IEEE Geoscience and Remote Sensing Letters, 8(3):537-541, May 2011. Keyword(s): atmospheric electromagnetic wave propagation, atmospheric humidity, atmospheric pressure, atmospheric techniques, atmospheric temperature, radiowave propagation, remote sensing by radar, APS removal, Bolzano, Italy, atmospheric humidity, atmospheric phase screen evaluation, atmospheric phase screen removal, atmospheric pressure, atmospheric temperature, compensation approach, ground based radar, initial calibration step, meteorological parameters, time varying delay statistics, Atmospheric modeling, Calibration, Coherence, Delay, Humidity, Radar, Refractive index, Atmospheric artifact compensation, differential interferometry, ground-based radar (GB-RADAR). [Abstract] [bibtex-entry]

  10. O. Monserrat, Michele Crosetto, M. Cuevas, and B. Crippa. The Thermal Expansion Component of Persistent Scatterer Interferometry Observations. IEEE Geosci. Remote Sens. Lett., 8(5):864 -868, September 2011. Keyword(s): SAR Processing, Persistent Scatterer Interferometry, PSI, Barcelona metropolitan area, PSI analysis, PSI products, Spain, TerraSAR-X spaceborne sensor, X-band SAR interferometric phases, deformation velocity maps, imaged objects, persistent scatterer interferometry observations, spaceborne radar, standard two-parameter PSI model, synthetic aperture radar acquisitions, thermal dilation parameter, thermal dilation phase component, thermal expansion component, thermal map, very high resolution X-band StripMap SAR data, geophysical image processing, geophysical techniques, radar interferometry, spaceborne radar, synthetic aperture radar, thermal expansion;. [Abstract] [bibtex-entry]

  11. L. Pipia, X. Fabregas, A. Aguasca, and C. Lopez-Martinez. Atmospheric Artifact Compensation in Ground-Based DInSAR Applications. IEEE Geosci. Remote Sens. Lett., 5(1):88-92, January 2008. Keyword(s): GB-SAR, ground-based SAR, terrestrial SAR, atmospheric humidity, atmospheric pressure, atmospheric techniques, atmospheric temperature, radar interferometry, synthetic aperture radar, AD 2005 06, Barcelona, Collserola Park, Spain, Universitat Politecnica de Catalunya, atmosphere variations, atmospheric artifact compensation, atmospheric humidity, atmospheric pressure, atmospheric temperature, coherence-based technique, differential interferometry Synthetic Aperture Radar, ground-Based DInSAR applications, heterogeneous environment, interferometric information, polarimetric measurements, Atmosphere, Atmospheric measurements, Atmospheric modeling, Information retrieval, Interferometry, Layout, Sensor phenomena and characterization, Sensor systems, Synthetic aperture radar, Testing, Differential interferometric SAR (DInSAR), GB-SAR sensor, polarimetric SAR (PolSAR), synthetic aperture radar (SAR). [bibtex-entry]

  12. D. Perissin and A. Ferretti. Urban-Target Recognition by Means of Repeated Spaceborne SAR Images. IEEE Trans. Geosci. Remote Sens., 45(12):4043 -4058, December 2007. Keyword(s): SAR Processing, Doppler radar, Image recognition, Image resolution, Image sensors, Polarization, Radar imaging, Radar scattering, Spaceborne radar, Synthetic aperture radar, Target recognition, airborne radar, geophysical signal processing, geophysical techniques, object recognition, radar interferometry, radar polarimetry, synthetic aperture radar, Doppler centroid acquisition geometry, automatic scattering structure recognition, elevated backscatterers, extended resonating targets, ground level backscatterers, normal baseline acquisition geometry, radar signal amplitude, radar signal polarization diversity, repeated spaceborne SAR images, resonating dihedrals, resonating poles, resonating trihedrals, simple dihedrals, simple poles, simple trihedrals, spaceborne C band SAR, synthetic aperture radar, urban target recognition, Interferometry, polarimetry, radar target recognition, synthetic aperture radar (SAR), urban areas;. [Abstract] [bibtex-entry]

  13. Daniele Perissin and Fabio Rocca. High-Accuracy Urban DEM Using Permanent Scatterers. IEEE Trans. Geosci. Remote Sens., 44(11):3338-3347, November 2006. Keyword(s): SAR Processing, Persistent Scatterer Interferometry, PSI, SAR Interferometry, InSAR, DInSAR, Interferometry, Area measurement, Cities and towns, Decorrelation, Digital elevation models, Interferometry, Monitoring, Radar detection, Radar scattering, Synthetic aperture radar, Volcanoes, building, interferometry, remote sensing by radar, synthetic aperture radar, terrain mapping, topography (Earth), Milan, building profile, city street level, digital elevation model, ground deformations monitoring, high-accuracy urban DEM, interferometry, permanent scatterers, slow-landslide detection, spatial density grid, subsidence, synthetic aperture radar, terrain mapping, urban elevation maps, volcano monitoring, Interferometry, synthetic aperture radar (SAR), terrain mapping, urban areas;. [Abstract] [bibtex-entry]

  14. C. Elachi, S. Wall, M. Allison, Y. Anderson, R. Boehmer, P. Callahan, P. Encrenaz, E. Flamini, G. Franceschetti, Y. Gim, G. Hamilton, S. Hensley, M. Janssen, W. Johnson, K. Kelleher, R. Kirk, R. Lopes, R. Lorenz, J. Lunine, D. Muhleman, S. Ostro, F. Paganelli, G. Picardi, F. Posa, L. Roth, R. Seu, S. Shaffer, L. Soderblom, B. Stiles, E. Stofan, S. Vetrella, R. West, C. Wood, L. Wye, and H. Zebker. Cassini Radar Views the Surface of Titan. Science, 308(5724):970-974, 2005. Keyword(s): SAR Processing, Cassini Radar, Saturn, astronomical instruments, planetary satellites, radar applications, radioastronomy, space vehicles, Cassini Saturn Mission, Cassini Titan Radar Mapper, Titan, antenna configuration, design constraints, multimode radar, radar modes, surface imaging, topographic mapping, Instruments, Laser radar, Moon, Optical design, Payloads, Probes, Radar antennas, Radar imaging, Saturn, Surface topography. [Abstract] [bibtex-entry]

  15. F. Gustrau and A. Bahr. W-band investigation of material parameters, SAR distribution, and thermal response in human tissue. IEEE Transactions on Microwave Theory and Techniques, 50(10):2393-2400, October 2002. Keyword(s): SAR Processing, W-Band, bioelectric phenomena, biological effects of microwaves, biological tissues, biothermics, dosimetry, eye, finite difference time-domain analysis, health hazards, infrared imaging, skin, 3 to 100 GHz, 77 GHz, Gunn oscillator, SAR distribution, W-band dielectric properties, analytical method, dosimetry, electromagnetic field, eye tissue, finite-difference time-domain method, horn antenna, human eye, human tissue, layered skin model, maximum local SAR values, maximum temperature increase, millimeter-wave irradiation, plane-wave exposure, porcine eye, safety guidelines, skin, specific absorption rate, superficial tissue, temperature changes, thermal bio-heat-transfer simulation, thermal infrared imaging system, thermal response, Antenna measurements, Biological materials, Biological system modeling, Biological tissues, Dielectric materials, Electromagnetic fields, Humans, Millimeter wave measurements, Skin, Temperature. [Abstract] [bibtex-entry]

  16. Andreas Wiesmann, Christian Matzler, and Thomas Weise. Radiometric and structural measurements of snow samples. Radio Science, 33(2):273-289, 1998. [Abstract] [bibtex-entry]

  17. Tazio Strozzi, Andreas Wiesmann, and Christian Matzler. Active microwave signatures of snow covers at 5.3 and 35 GHz. Radio Science, 32(2):479-495, 1997. Keyword(s): microwave signatures, Snow, Remote Sensing of Snow, C-band, Ka-band, Electromagnetics. [Abstract] [bibtex-entry]

  18. Howard A. Zebker, Paul A. Rosen, and Scott Hensley. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of Geophysical Research: Solid Earth, 102(B4):7547-7563, 1997. Keyword(s): Remote sensing, Instruments and techniquesInstruments and techniques. [Abstract] [bibtex-entry]

  19. Christian Matzler. Microwave permittivity of dry snow. IEEE Transactions on Geoscience and Remote Sensing, 34(2):573-581, 1996. Keyword(s): UHF measurement, hydrological equipment, permittivity, snow, -10 to 0 degC, 1 GHz, Austrian Alps, Swiss Alps, average axial ratio, coaxial sensor, density, destructive metamorphism, dry snow, ice grains, ice volume fraction, liquid-like surface layer, microwave permittivity, oblate spheroids, physical mixing theory, prolate spheroids, relative dielectric constant, relative permittivity, resometer, resonator, sintering, Coaxial components, Dielectric constant, Dielectric measurements, Frequency, Ice, Instruments, Measurement standards, Permittivity measurement, Snow, Testing. [Abstract] [bibtex-entry]

  20. J.O. Hagberg, L. M. H. Ulander, and J. Askne. Repeat-pass SAR interferometry over forested terrain. IEEE Trans. Geosci. Remote Sens., 33(2):331-340, March 1995. Keyword(s): SAR Processing, SAR interferometry, forest, forested terrain, forestry, general system model, geophysical method, interferometry, land surface topography, measurement technique, radar remote sensing, repeat pass method, scene scattering, synthetic aperture radar, topographic map, vegetation mapping, forestry, geophysical techniques, radar applications, radar imaging, remote sensing, remote sensing by radar, synthetic aperture radar, topography (Earth). [Abstract] [bibtex-entry]

  21. Sasan S. Saatchi, D. M. Le Vine, and R. H. Lang. Microwave backscattering and emission model for grass canopies. IEEE Trans. Geosci. Remote Sens., 32(1):177-186, January 1994. Keyword(s): atmospheric techniques, atmospheric temperature, geophysical techniques, hydrological techniques, radiometry, remote sensing, remote sensing by radar, soil, temperature measurement, 1.4 GHz, 4.75 GHz, C-band, L-band, UHF SHF, distorted Born approximation, elliptical disc, emission model, emissivity, geophysical measurement technique, grass canopies, grassland, hydrology, land surface, microwave backscattering, model, radar cross section, radar remote sensing, soil moisture, thatch layer, vegetation, vegetation canopy, wet Konza prairie, Backscatter, Electromagnetic heating, L-band, Microwave measurements, Microwave radiometry, Moisture measurement, Radar cross section, Radar measurements, Soil measurements, Soil moisture. [Abstract] [bibtex-entry]

  22. Jan Askne and H. Nordius. Estimation of tropospheric delay for microwaves from surface weather data. Radio Science, 22(3):379-386, 1987. [Abstract] [bibtex-entry]

  23. Martti T. Hallikainen, Fawwaz Ulaby, and Mohamed Abdelrazik. Dielectric properties of snow in the 3 to 37 GHz range. IEEE Transactions on Antennas and Propagation, 34(11):1329-1340, November 1986. Keyword(s): Dielectric measurements, Density measurement, Dielectric measurements, Frequency, Predictive models, Scattering, Shape measurement, Size measurement, Snow, Temperature distribution, Volume measurement. [Abstract] [bibtex-entry]

  24. J. Saastamoinen. Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites, pages 247-251. American Geophysical Union, 1972. Keyword(s): Meteorology, Radio ranging of satellites, Refractive index of air, Stratosphere, Troposphere. [Abstract] [bibtex-entry]

  25. J. Saastamoinen. Contributions to the theory of atmospheric refraction. Bulletin Godsique (1946-1975), 105(1):279-298, 1972. [Abstract] [bibtex-entry]

  26. H. S. Hopfield. Tropospheric Effect on Electromagnetically Measured Range: Prediction from Surface Weather Data. Radio Science, 6(3):357-367, 1971. [Abstract] [bibtex-entry]

  27. E.K. Smith and S. Weintraub. The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies. Proceedings of the IRE, 41(8):1035-1037, August 1953. Keyword(s): Atmosphere, Atmospheric measurements, Equations, Humidity, Microwave measurements, Microwave theory and techniques, Radio frequency, Radio propagation, Refractive index, Temperature distribution. [Abstract] [bibtex-entry]

  28. L. Essen and K. D. Froome. The Refractive Indices and Dielectric Constants of Air and its Principal Constituents at 24,000 Mc/s. Proceedings of the Physical Society. Section B, 64(10):862, 1951. [Abstract] [bibtex-entry]

Conference articles

  1. M. Schuetz, M. Oesterlein, C. Birkenhauer, and M. Vossiek. A custom lightweight UAV for radar remote sensing: Concept design, properties and possible applications. In 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), pages 107-110, March 2017. Keyword(s): embedded systems, Global Positioning System, ground penetrating radar, MIMO radar, radar interferometry, remote sensing, synthetic aperture radar, custom lightweight UAV, radar remote sensing, concept design, tailor-made UAV-based sensor platform, radar remote sensing, radar baseband processing, differential GPS system, synthetic apertures, interferometric remote sensing, MIMO radar system, side-looking-airborne-radar, full interferometric SAR processing, radar altimeter measurement, altitude estimators, ultrasonic sensors, barometric sensors, Radar remote sensing, Synthetic aperture radar, Radar antennas, Baseband, Antenna arrays, Clocks, multicopter, UAV, remote sensing, system design, radar system, SAR, interferometry. [Abstract] [bibtex-entry]

  2. Muhammad Adnan Siddique, Irena Hajnsek, Urs Wegmuller, and Othmar Frey. Towards the integration of SAR tomography and PSI for improved deformation assessment in urban areas. In Proc. FRINGE 2015, ESA SP-731, March 2015. Keyword(s): SAR Processing, SAR Tomography, persistent scatterer interferometry, PSI, DInSAR, multibaseline interferometry, interferometric stacking, deformation monitoring, subsidence monitoring, thermal dilation, urban, urban remote sensing. [Abstract] [bibtex-entry]

  3. Andreas Wiesmann, Charles L. Werner, Tazio Strozzi, Christian Matzler, Thomas Nagler, Helmut Rott, Martin Schneebeli, and Urs Wegmuller. SnowScat, X- to Ku-Band Scatterometer Development. In Proc. ESA Living Planet Symposium, June 2010. Keyword(s): SnowScat, KuScat, backscatter, hydrological techniques, radiometry, remote sensing by radar, snow, spaceborne radar, C-band SAR satellite systems, ESA CoRe-H2O mission, Ku-band scatterometer, Swiss Alps, X-band scatterometer, backscatter information, backscattering signal, dry snow cover, dual frequency radar, frequency 18 GHz, frequency 9 GHz, mobile scatterometer, snow coverage, snow liquid water content, snow structure, spaceborne active microwave remote sensing, Backscatter, Frequency, Ground support, Radar measurements, Remote sensing, Satellites, Signal generators, Snow, Spaceborne radar, Water storage, Scatterometer, Snow, backscatter, snow grain. [Abstract] [bibtex-entry]



Please note that access to full text PDF versions of papers is restricted to the Chair of Earth Observation and Remote Sensing, Institute of Environmental Engineering, ETH Zurich.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

This collection of SAR literature is far from being complete.
It is rather a collection of papers which I store in my literature data base. Hence, the list of publications under PUBLICATIONS OF AUTHOR'S NAME should NOT be mistaken for a complete bibliography of that author.

Last modified: Mon Feb 1 16:41:26 2021
Author: Othmar Frey, Earth Observation and Remote Sensing, Institute of Environmental Engineering, Swiss Federal Institute of Technology - ETH Zurich .

This document was translated from BibTEX by bibtex2html